【包郵】數據驅動 從方法到實踐 桑文鋒+數據産品經理必修課 從零經驗到令人驚艷 企業數據驅動管理書籍

【包郵】數據驅動 從方法到實踐 桑文鋒+數據産品經理必修課 從零經驗到令人驚艷 企業數據驅動管理書籍 pdf epub mobi txt 电子书 下载 2025

桑文鋒 李鑫 著
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 蓝墨水图书专营店
出版社: 电子工业出版社
ISBN:9787121334511
商品编码:10160175323
出版时间:2018-03-31

具体描述



數據驅動:從方法到實踐  

 

 

作 譯 者:桑文鋒

齣版時間:2018-03    韆 字 數:260

版    次:01-01    頁    數:216

開    本:16開

裝    幀:

I S B N :9787121334511     

換    版:

所屬分類:科技 >> 計算機 >> 計算機科學

紙質書定價:¥49.0

本書是一本從理論到實踐的全麵且細緻的企業數據驅動指南,作者見證並獻身百度大數據的建設,毫無保留地將成敗摸索實踐的真實場景進行完整還原,並對近十年大數據從業經驗與心得做瞭歸納和總結,同時詳解大數據本質、理念與現狀,並圍繞數據驅動四環節——采集、建模、分析、指標,深入淺齣地講述企業如何從零到一將完整的數據驅動方案落地,全麵展示大數據在各領域內的應用情況與趨勢展望。

 

 

 

第1章 從百度大數據工作的經曆說開 / 1

百度數據闆塊:網頁數據和用戶行為數據 / 3

搜索引擎發展 / 4

用戶行為分析踐行:百度知道的迴答量提升 7.5% / 5

從零到一構建百度大數據分析平颱 / 6

數據源與 Event 模型的重要性 / 9

大數據是屠龍術 / 10

第2章 大數據思維與數據驅動 / 11

大數據的概念 / 14

大數據之“大” / 14

大數據之“全” / 15

大數據之“細” / 16

大數據之“時” / 16

大數據的本質 / 17

數據驅動理念與現狀 / 20

數據驅動的價值 / 20

企業內部數據驅動現狀 / 21

理想的數據驅動 —— “流” / 23

大數據時代到來的條件 / 24

數據采集能力增強 / 25

數據處理能力增強 / 26

數據意識的提升 / 27

第3章 數據驅動的環節 / 29

數據采集與埋點 / 32

數據采集的現狀 / 32

數據采集遵循法則 / 34

科學的數據采集和埋點方式 / 36

數據的準確性 / 40

數據建模 / 44

數據模型與建模 / 44

多維數據模型 / 46

多維事件模型 / 49

多維事件模型的探索經曆 / 52

數據分析方法 / 55

行為事件分析 / 55

漏鬥分析 / 58

留存分析 / 61

分布分析 / 64

點擊分析 / 67

用戶路徑 / 73

用戶分群 / 75

屬性分析 / 80

指標體係構建 / 82

第一關鍵指標法 / 82

海盜指標法 / 86

第4章 數據驅動産品和運營決策 / 89

數據驅動運營監控 / 91

用戶獲取(Acquisition) / 91

激活(Activation) / 92

留存(Retention) / 97

引薦(Referral) / 99

營收(Revenue) / 101

數據驅動産品改進和體驗優化 / 102

數據驅動商業決策 / 104

數據驅動落地企業,要從管理者做起 / 106

數據驅動商業決策的價值 / 108

第5章 數據驅動産品智能 / 109

數據平颱及用戶智能 / 114

如何計算熱門榜單 / 114

客服係統中的行為數據 / 114

為什麼需要數據平颱 / 115

數據平颱提供的能力 / 116

數據應用與用戶智能 / 119

基於用戶行為數據的用戶智能應用 / 119

用戶智能分類:基於規則與機器學習 / 123

用戶智能應用——用戶畫像 / 132

兩種用戶畫像:User Persona與User Profile / 132

用戶畫像(User Profile)標簽體係的建立 / 135

用戶智能應用——個性化推薦 / 139

個性化推薦的概念 / 139

架構實現 / 140

數據流 / 142

業務分析與模型選擇 / 143

實驗與迭代 / 144

第6章 各行業實踐數據分析全過程 / 147

互聯網金融數據驅動實踐 / 149

實踐案例 / 150

企業服務數據驅動實踐 / 158

數據驅動能夠為企業服務做什麼 / 159

麵臨的挑戰 / 160

數據應用的階段 / 161

實踐案例 / 168

零售行業數據驅動實踐 / 175

實踐案例 / 176

電子商務數據驅動實踐 / 186

打破企業發展經營睏局:從粗放式到精細化 / 186

電商企業數據驅動瓶頸 / 187

實踐案例 / 187

寫在最後的話 / 197

..



齣版社: 電子工業齣版社 ISBN:9787121336959版次:1商品編碼:12333698品牌:Broadview包裝:平裝開本:16齣版時間:2018-04-01用紙:膠版紙頁數:324

 

編輯推薦

由於各大公司開展大數據戰略,而原有的産品經理在轉型數據産品經理過程中先天缺失數據思維與響應技能,因而在進行數據産品規劃時具有短闆。為瞭彌補各大公司數據産品經理在技術領域的短闆,本書應時而生。

√ 麵嚮傳統行業産品經理轉型

√ 徹底打破高深數學公式的入門門檻

√ 兼顧軟硬技能,融閤知識體係化與實戰經驗化

內容簡介

當産品經理遇上大數據時代,數據産品經理應運而生。新時代的新崗位自然也有新要求。數據思維、數據預處理、數據統計、數據挖掘、數據可視化等是産品經理的技能。懂産品、懂運營、懂市場、懂錶達、懂管理則是數據分析師的技能外延。《數據産品經理必修課:從零經驗到令人驚艷》正是為有誌於從事數據産品崗位的人士提供掌握上述技能的必修課。

讓我們通過《數據産品經理必修課:從零經驗到令人驚艷》,在大數據的浪潮中乘科技與人文的扁舟,駛過數據産品經理的港灣,駛嚮數據科學傢的彼岸。

作者簡介

李鑫,於中國科學技術大學獲計算機科學博士學位,悉尼科技大學訪問學者,大數據分析與應用安徽省重點實驗室研究員,中國互聯網協會青年專傢。現任科大訊飛研究院研究主管,先後負責大數據與人工智能技術在教育、腦科學等領域落地的業務,在國際知名學術會議與期刊發錶論文近30篇。

精彩書評

過去十年,産品經理這個崗位被推到舞颱,隨著行業的發展,這個崗位也在演化,其中的一個趨勢就是專業化。本書從數據和産品經理的雙重視角詳細講述瞭數據産品經理所需的各種能力,既有理論,也能落地,建議各位有意嚮此方嚮發展的朋友閱讀。

蘇傑 《人人都是産品經理》作者 良倉孵化器聯閤創始人

市麵上關於産品經理的書琳琅滿目,但像本書一樣站在數據角度談産品經理技能的卻並不常見。書中字裏行間,無處不見作者對産品的獨特見解與思考,不僅可以幫助我們掌握數據産品經理的技能,還能讓我們擴寬産品視角,更好地進行工作實踐。

黃勇 《架構探險》作者 特贊科技CTO

數據科學是一個新的跨學科領域,用於研究“數據科學思維”之後的數據。數據科學的成果是數據産品,數據産品經理應該利用數據科學技術來解決現實生活中的問題。強烈建議想要成為數據産品經理的朋友閱讀本書。

操龍兵 悉尼科技大學教授 SIG KDD澳新分會 KDD2015大會

大數據分析時代到來,如何通過數據驅動來轉型産品從而實現數據變現,正成為一個新的挑戰。本書應時而生,作者基於自己的實踐經驗和研究,從獨有的視角展示瞭數據産品的全生命周期管理過程。同時這也是一本很有趣味的書,很值得一讀!

陳燕鋏 IBM全球業務解決方案中心(GBSC)總監

信息技術飛躍發展,人類的教育學習方式麵臨新的挑戰。本書用幽默的語言和一些曆史軼事介紹瞭企業中的教育數據産品經理的技能,無論對於教育産業實踐者,還是麵臨教學改革的科研人員來說,都是值得一讀的好書。

孫源 日本國立情報學研究所準教授 信息知識學會理事

充分運用數據思維提升産品體驗,這是各個公司都不可或缺的重要能力。因此,作為一名産品經理,如何帶著數據思維打造更加智能的産品,將是一門重要的必修課,本書恰好為大傢提供瞭有效的學習途徑,值得品讀。

劉啓斌 安徽雲鬆投資管理有限公司總經理

目錄

一部分 産品經理的前世今生

1章 産品經理的前世

1.1 産品經理究竟是什麼 4

1.1.1 咬文嚼字說産品經理 4

1.1.2 産品經理的曆史溯源 5

1.2 泛産品經理與産品經理 6

1.2.1 産品經理的專業取嚮 7

1.2.2 産品經理的泛化 8

1.3 互聯網産品經理的規定動作 12

1.3.1 需求調研 12

1.3.2 競品分析 14

1.3.3 原型設計 16

2章 産品經理的今生

2.1 賣傢秀:自我提升的幾項技能 20

2.1.1 從需求文檔到動機文檔 20

2.1.2 從競品分析到廣義競品分析 22

2.1.3 從原型設計到交互設計 24

2.2 買傢秀:弄垮團隊的若乾“要領” 28

2.2.1 越過産品雷池 28

2.2.2 踏入團隊雷池 29

2.2.3 邁嚮公司雷池 30

3章 産品經理的入行

3.1 入行做産品的幾種可能 34

3.1.1 源自技術崗 34

3.1.2 源自業務崗 35

3.1.3 源自應屆生 36

3.2 上崗後的一件事 37

3.2.1 産品全圖 38

3.2.2 行業全圖 39

3.2.3 産業全圖 40

3.3 工作中如何學習 41

二部分 古往今來的數據思維

4章 曆史中的數據思維

4.1 人口普查:早的數據埋點策略 46

4.1.1 埋點的技術視角 46

4.1.2 埋點的時機與策略 48

4.2 命令與徵服:可視化早的用意 49

4.2.1 可視化大傢說 50

4.2.2 可視化與曆史 51

4.3 科技革命:助力數據産品落地 54

4.3.1 手工統計 55

4.3.2 機械統計 55

4.3.3 電子統計 57

4.4 數據驅動決策的曆史溯源 57

4.4.1 美國建立時用數據分權 58

4.4.2 南北戰爭時用數據進軍 59

4.4.3 經濟發展時用數據裁判 60

4.5 管理谘詢:使用數據降本增效 61

4.5.1 谘詢指引數據産品方嚮 62

4.5.2 管理啓迪思維模式更新 63

4.6 聊聊統計學 64

4.6.1 政治算術 64

4.6.2 頻率學派 65

4.6.3 概率學派 66

4.7 LEHD:美國的一個大數據項目 67

4.7.1 信息逐步開放 67

4.7.2 大數據項目開展 68

4.8 曆史給我們數據思維的啓示 69

4.8.1 用數據說話 69

4.8.2 嚮賢者取經 69

4.8.3 漸進性創新 70

4.8.4 需求創造供給 70

5章 行業擁抱數據思維

5.1 大數據從何而來 72

5.1.1 大數據曆史 73

5.1.2 自身發展 75

5.2 大數據的全球格局與中國麵貌 76

5.2.1 全球格局 76

5.2.2 中國麵貌 77

5.2.3 行業概覽 78

5.3 大數據+“治理與交通” 81

5.3.1 治理 81

5.3.2 交通 83

5.4 大數據+“零售與金融” 84

5.4.1 零售 84

5.4.2 金融 88

5.5 大數據+“體育與教育” 89

5.5.1 體育 89

5.5.2 教育 91

5.6 大數據+“醫療與旅遊” 93

5.6.1 醫療 93

5.6.2 旅遊 94

5.7 大數據+“農業與製造” 96

5.7.1 農業 96

5.7.2 製造 97

5.8 大數據行業成熟瞭嗎 97

5.8.1 行業成熟度 98

5.8.2 大數據理念 99

5.8.3 大數據趨勢 100

5.9 大數據在産業中的位置 103

5.9.1 行業組成 104

5.9.2 産業構成 106

6章 當産品經理遇見數據思維

6.1 下一站:數據科學傢 110

6.1.1 數據科學的曆史由來 110

6.1.2 數據科學與商業智能 111

6.1.3 數據科學的職業分類 112

6.1.4 數據分析的技能進階 114

6.2 數據産品經理的職業新要求 115

三部分 數據産品經理的技能進階

7章 麵嚮産品經理的數據預處理

7.1 數據分析的標準姿勢 128

7.2 淘洗數據沙礫(數據清洗) 130

7.2.1 缺失值 130

7.2.2 異常值 132

7.2.3 歸一化 133

7.3 聚細沙成塔(數據集成) 135

7.3.1 實體識彆 135

7.3.2 冗餘性識彆 136

7.4 換個姿勢再來一次(數據變換) 137

7.4.1 離散化 137

7.4.2 屬性構造 139

7.5 少即是美(數據規約) 139

7.5.1 特徵規約 140

7.5.2 樣本規約 141

8章 麵嚮産品經理的統計分析

8.1 說有信息量的話(非時序數據的統計量) 144

8.1.1 集中趨勢 145

8.1.2 離散趨勢 146

8.1.3 數據分布 148

8.2 股票指數是什麼(時序數據的統計量) 148

8.2.1 “三比” 149

8.2.2 股票指數 150

8.3 男女真的有彆嗎(分類數據的統計量) 152

8.3.1 卡方是什麼 152

8.3.2 卡方怎麼算 153

8.4 相關性不是因果性(連續數據的統計量) 156

8.4.1 Pearson 156

8.4.2 Spearman 157

8.4.3 Kendall 158

8.5 數據不能承受之“熵” 159

8.5.1 物理中的“熵” 159

8.5.2 信息中的“熵” 160

9章 麵嚮産品經理的數據挖掘

9.1 學數據挖掘,隻需要高中數學 164

9.1.1 重溫“加減乘除” 164

9.1.2 重溫“比值” 165

9.1.3 重溫“函數” 165

9.1.4 重溫“符號” 165

9.2 綫性迴歸:人為什麼沒有嚴重兩極分化 166

9.2.1 優生學趣聞 166

9.2.2 空間中的直綫 167

9.3 邏輯迴歸:種群增長的S型麯綫 169

9.3.1 種群的增長麯綫 169

9.3.2 S型麯綫的秘密 171

9.4 樸素貝葉斯:麵相占蔔工作原理 172

9.4.1 外貌協會與街頭看相 173

9.4.2 無處不在的貝葉斯 174

9.5 決策樹:愛情選擇背後的心理學意義 176

9.5.1 愛情選擇條件多 177

9.5.2 不糾結的小技巧 178

9.6 K-means:尋找物理學上的質心 181

9.6.1 嚮中心看齊 181

9.6.2 站錯隊的後果 183

9.7 層次聚類:分而治之與抱團取暖 184

9.7.1 分而治之 185

9.7.2 抱團取暖 185

9.8 DBScan:帝國崛起的定居、建國與擴張 186

9.8.1 密度打敗劃分 187

9.8.2 相似的帝國發展路徑 188

9.9 關聯規則挖掘:“啤酒和尿布”是個謊言 188

9.9.1 訛傳已久的商業故事 189

9.9.2 關聯規則的三重門 190

9.10 時間序列分析:聊聊《周易》 192

9.10.1 時間序列分析的玄妙 192

9.10.2 時間序列分析的正經 194

9.11 集成學習:三個臭皮匠賽過諸葛亮 195

9.11.1 多拜師與拜大師 196

9.11.2 嚮大傢與失敗學習 197

9.12 文本挖掘:讓機器讀懂你 199

9.13 社交網絡:隱私無處遁形 202

9.14 排序:簡約而不簡單的事 205

9.14.1 排序的規則方法 205

9.14.2 排序的操作機理 207

9.15 推薦係統:“今日頭條”背後的秘密 208

9.16 用戶畫像:隱私是個“僞命題” 213

9.17 算法思想中的哲學內涵 216

10章 麵嚮産品經理的數據可視化

10.1 彆人傢的可視化:陽春白雪 222

10.2 工作中的可視化:下裏巴人 227

10.3 用可視化“說謊” 230

10.3.1 數據的誤導 230

10.3.2 邏輯的謬誤 234

10.4 準備一份數據報告 238

11章 嚮數據科學傢再邁一步

11.1 能文:陪運營跟蹤産品看效果 244

11.1.1 傳統運營的基本功 245

11.1.2 數字化運營“三”話你知 248

11.2 能武:追研發把控進度齣成果 251

11.2.1 數據采集 251

11.2.2 數據存儲 254

11.2.3 數據計算 256

11.2.4 數據分析 258

11.3 能聊:跟隨銷售麵嚮市場找思路 258

四部分 數據産品經理的自我修養

12章 學習力:藉方法論加速

12.1 方法論知多少 266

12.1.1 概念闡述 266

12.1.2 分類總結 267

12.2 學習過程的“滿灌”與“脫敏” 269

12.2.1 理解提煉 269

12.2.2 我的方法論 271

13章 錶達力:用邏輯學幫襯

13.1 寫得一手好文案 274

13.1.1 為公務員考試正名 274

13.1.2 寫作實戰簡明教程 275

13.2 講故事給同事聽 278

14章 領導力:以經濟學詮釋

14.1 事情背後的選擇 285

14.1.1 選擇價值鏈上遊:剪刀差效應 285

14.1.2 學會審時度勢:美林時鍾 286

14.1.3 謹慎選擇彆人的經驗:推繩子效應 286

14.1.4 平衡是一個難題:薩伊定律與凱恩斯法則 287

14.2 人員之間的協同 288

14.2.1 你閃開,讓我來:絕對優勢與相對優勢 288

14.2.2 無條件開放:零和博弈與閤作共贏 289

14.2.3 教會團隊成員什麼是沉沒成本 290

15章 軟實力:靠心理學打造

15.1 嚮內求:耐心、謙遜、熱心 294

15.1.1 讓自己“延遲滿足” 294

15.1.2 對錶揚免疫 295

15.1.3 不怕丟臉地分享 297

15.2 對外看:大局、妥協、有趣 297

15.2.1 看問題需要“上帝視角” 298

15.2.2 率真對內,圓滑對外 298

15.2.3 一切從簡,有趣有夢 299


用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有