Men of Mathematics
內容簡介
Here is the classic, much-read introduction to the craft and history of mathematics by E.T. Bell, a leading figure in mathematics in America for half a century. Men of Mathematics accessibly explains the major mathematics, from the geometry of the Greeks through Newton's calculus and on to the laws of probability, symbolic logic, and the fourth dimension. In addition, the book goes beyond pure mathematics to present a series of engrossing biographies of the great mathematicians -- an extraordinary number of whom lived bizarre or unusual lives. Finally, Men of Mathematics is also a history of ideas, tracing the majestic development of mathematical thought from ancient times to the twentieth century. This enduring work's clear, often humorous way of dealing with complex ideas makes it an ideal book for the non-mathematician.
媒體推薦
Nature Professor E.T. Bell has written a fascinating book. The amount of biographical details and of mathematics that he has compressed into a volume of 600 pages is extraordinary...he carries the reader along; he whets the appetite. -- Review
作者簡介
Eric Temple Bell was born in 1883 in Aberdeen, Scotland. His early education was obtained in England. Coming to the United States in 1902, he entered Stanford University and took his A.B. degree in 1904. In 1908 he was teaching fellow at the University of Washington, where he took his A.M. degree in 1909. In 1911 he entered Columbia University, where he took his Ph.D. degree in 1912. He returned to the University of Washington as instructor in mathematics and became full professor in 1921. During the summers of 1924-28 he taught at the University of Chicago, and in 1926 (first half) at Harvard University, when he was appointed Professor of Mathematics at the California Institute of Technology.
Dr. Bell was a former President of the Mathematical Association of America, a former Vice President of the American Mathematical Society and of the American Association for the Advancement of Science. He was on the editorial staffs of the Transactions of the American Mathematical Society, the American Journal of Mathematics, and the Journal of the Philosophy of Science. He belonged to The American Mathematical Society, the Mathematical Association of America, the Circolo Matematico di Palermo, the Calcutta Mathematical Society, Sigma Xi, and Phi Beta Kappa, and was a member of the National Academy of Sciences of the United States. He won the Bôcher Prize of the American Mathematical Society for his research work. His twelve published books include The Purple Sapphire (1924), Algebraic Arithmetic (1927), Debunking Science, and Queen of the Sciences (1931), Numerology (1933), and The Search for Truth (1934).
Dr. Bell died in December 1960, just before the publication of his latest book, The Last Problem.
目錄
Contents
1. INTRODUCTION
For the reader's comfort. The beginning of modern mathematics. Are mathematicians human? Witless parodies. Illimitable scope of mathematical evolution. Pioneers and scouts. A clue through the maze. Continuity and discreteness. Remarkable rarity of common sense. Vivid mathematics or vague mysticism? Four great ages of mathematics. Our own the Golden Age.
2. MODERN MINDS IN ANCIENT BODIES
Zeno (fifth century B.C.), Eudoxus (408-355 B.C.), Archimedes (287?-212 B.C.)
Modern ancients and ancient moderns. Pythagoras, great mystic, greater mathematician. Proof or intuition? The taproot of modern analysis. A bumpkin upsets the philosophers. Zeno's unresolved riddles. Plato's needy young friend. Inexhaustible exhaustion. The useful conics. Archimedes, aristocrat, greatest scientist of antiquity. Legends of his life and personality. His discoveries and claim to modernity. A sturdy Roman. Defeat of Archimedes and triumph of Rome.
3. GENTLEMAN, SOLDIER, AND MATHEMATICIAN
Descartes (1596-1650)
The good old days. A child philosopher but no prig. Inestimable advantages of lying in bed. Invigorating doubts. Peace in war. Converted by a nightmare. Revelation of analytic geometry. More butchering. Circuses, professional jealousy, swashbuckling, accommodating lady friends. Distaste for hell-fire and respect for the Church. Saved by a brace of cardinals. A Pope brains himself. Twenty years a recluse. The Method. Betrayed by fame. Doting Elisabeth. What Descartes really thought of her. Conceited Christine. What she did to Descartes. Creative simplicity of Ms geometry.
4. THE PRINCE OF AMATEURS
Fermat (1601-1665)
Greatest mathematician of the seventeenth century. Fermat's busy, practical life. Mathematics his hobby. His flick to the calculus. His profound physical principle. Analytic geometry again. Arithmetica and logistica. Fermat's supremacy in arithmetic. An unsolved problem on primes. Why are some theorems "important"? An intelligence test. "Infinite descent." Fermat's unanswered challenge to posterity.
5. "GREATNESS AND MISERY OF MAN"
Pascal (1625-1662)
An infant prodigy buries his talent. At seventeen a great geometer. Pascal's wonderful theorem. Vile health and religious inebriety. The first calculating Frankenstein. Pascal's brilliance in physics. Holy sister Jacqueline, soul-saver. Wine and women? "Get thee to a nunnery.!" Converted on a spree. Literature prostituted to bigotry. The Helen of Geometry. A celestial toothache. What the post-mortem revealed. A gambler makes mathematical history. Scope of the theory of probability. Pascal creates the theory with Fermat. Folly of betting against God or the Devil.
6. ON THE SEASHORE
Newton (1642-1727)
Newton's estimate of himself. An uncertified youthful genius. Chaos of his times. On the shoulders of giants. His one attachment. Cambridge days. Young Newton masters futility of suffering fools gladly. The Great Plague a greater blessing. Immortal at twenty four (or less). The calculus. Newton unsurpassed in pure mathematics, supreme in natural philosophy. Gnats, hornets, and exasperation. The Principia. Samuel Pepys and other fussers. The flattest anticlimax in history. Controversy, theology, chronology, alchemy, public office, death.
7. MASTER OF ALL TRADES
Leibniz (1646-1716)
Two superb contributions. A politician's offspring. Genius at fifteen. Seduced by the law. The "universal characteristic." Symbolic reasoning. Sold out to ambition. A master diplomat. Diplomacy being what it is, the diplomatic exploits of the master are left to the historians. Fox into historian, statesman into mathematician. Applied ethics. Existence of God. Optimism. Forty years of futility. Discarded like a dirty rag.
8. NATURE OR NURTURE?
The Bernoullis (seventeenth-and eighteenth centuries)
Eight mathematicians in three generations. Clinical evidence for heredity. The calculus of variations.
9. ANALYSIS INCARNATE
Euler (1707-1783)
The most prolific mathematician in history. Snatched from theology. Rulers foot the bills. Practicality of the unpractical. Celestial mechanics and naval warfare. A mathematician by chance and foreordination. Trapped in St. Petersburg. The virtues of silence. Half blind in his morning. Flight to liberal Prussia. Generosity and boorishness of Frederick the Great. Return to hospitable Russia. Generosity and graciousness of Catherine the Great. Total blindness at noon. Master and inspirer of masters for a century.
10. A LOFTY PYRAMID
Lagrange (1736-1813)
Greatest and most modest mathematician of the eighteenth century. Financial ruin his opportunity. Conceives his masterpiece at nineteen. Magnanimity of Euler. Turin, to Paris, to Berlin: a grateful bastard aids a genius. Conquests in celestial mechanics. Frederick the Great condescends. Absent-minded marriage. Work as a vice. A classic in arithmetic. The Mécanique analytique a living masterpiece. A landmark in the theory of equations. Welcomed in Paris by Marie Antoinette. Nervous exhaustion, melancholia, and universal disgust in middle life. Reawakened by the French Revolution and a young girl. What Lagrange thought of the Revolution. The metric system. What the revolutionists thought of Lagrange. How a philosopher dies.
11. FROM PEASANT TO SNOB
Laplace (1749-1827)
Humble as Lincoln, proud as Lucifer. A chilly reception and a warm welcome. Laplace grandiosely attacks the solar system. The Mécanique céleste. His estimate of himself. What others have thought of him. The "potential" fundamental in physics. Laplace in the French Revolution. Intimacy with Napoleon. Laplace's political realism superior to Napoleon's.
12. FRIENDS OF AN EMPEROR
Monge (1746-1818), Fourier (1768-1830)
A knife grinder's son and a tailor's boy help Napoleon to upset the aristocrats' applecart. Comic opera in Egypt. Monge's descriptive geometry and the Machine Age. Fourier's analysis and modern physics. Imbecility of trusting in princes or proletarians. Boring to death and bored to death.
13. THE DAY OF GLORY
Poncelet (1788-1867)
Resurrected from a Napoleonic shambles. The path of glory leads to jail. Wintering in Russia in 1812. What genius does in prison. Two years of geometry in hell. The rewards of genius: stupidities of routine. Poncelet's projective geometry. Principles of continuity and duality.
14. THE PRINCE OF MATHEMATICIANS
Gauss (1777-1855)
Gauss the mathematical peer of Archimedes and Newton. Humble origin. Paternal brutality. Unequalled intellectual precocity. His chance, at ten. By twelve he dreams revolutionary discoveries, by eighteen achieves them. The Disquisitiones Arithmeticae. Other epochal works summarized. The Ceres disaster. Napoleon, indirectly robbing Gauss, takes second best. Fundamental advances in all branches of mathematics due to Gauss too numerous for citation: see the account given. A sage of sages. Unwelcome death.
15. MATHEMATICS AND WINDMILLS
Cauchy (1789-1857)
Change in nature of mathematics with nineteenth century. Childhood in the French Revolution. Cauchy's early miseducation. Lagrange's prophecy. The young Christian engineer. Prophetic acuteness of Malus. The theory of groups. In the front rank at twenty seven. One of Fermat's enigmas solved. The pious hippopotamus. Butted by Charles the Goat. Memoirs on astronomy and mathematical physics. Sweetness and obstinacy invincible. The French Government makes a fool of itself. Cauchy's place in mathematics. Drawbacks of an irreproachable character.
16. THE COPERNICUS OF GEOMETRY
Lobatchewsky (1793-1856)
The widow's mite. Kazan. Appointed professor and spy. Universal ability. Lobatchewsky as an administrator. Reason and incense combat the cholera. Russian gratitude. Humiliated in his prime. Blind as Milton, Lobatchewsky dictates his masterpiece. His advance beyond Euclid. Non-Euclidean geometry. A Copernicus of the intellect.
基本信息
齣版社: Touchstone; Reissue (1986年10月15日)
叢書名: Touchstone Book
平裝: 608頁
語種: 英語
ISBN: 0671628186
條形碼: 9780671628185
商品尺寸: 13.5 x 4.1 x 21 cm
商品重量: 499 g
ASIN: 0671628186
评分
评分
评分
评分
评分
评分
评分
评分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有