发表于2024-11-08
在綫社交網絡:在Facebook和Twitter個體關係網中發現的人類認知約束 pdf epub mobi txt 電子書 下載 2024
本書采用多學科的方法研究社交網絡,並討論瞭該領域內*新的研究成果。本書也討論瞭如何發現在綫社交網絡中的結構屬性以拓展社交網絡的分析和建立未來的在綫服務,以及幾個分析信息擴散的例子,在書中提齣瞭基於全新溝通平颱的研究成果,即特定的在綫社交網絡的結構屬性是如何影響該類服務的關鍵特徵的。
目 錄
第1章 引言 1
1.1 離綫社交網絡和在綫社交網絡 1
1.2 網絡與現實交織下的在綫社交網絡 3
1.3 自我網絡分析和社交大腦假說 6
1.4 本書的目的 7
1.5 本書結構 8
第2章 人類社交網絡 9
2.1 引言 9
2.2 無權社交網絡的宏觀屬性 10
2.2.1 復雜網絡中的指標 10
2.2.2 社交網絡分析中得齣的關鍵結論 14
2.2.3 生成網絡圖的網絡模型 23
2.3 從社交網絡圖到互動網絡圖 26
2.4 社會網絡的微觀屬性 29
2.4.1 自我網絡中的層級結構 31
2.4.2 擴展自我網絡與結構洞 33
2.5 橋接社交網絡中的微觀和宏觀屬性 35
2.6 本章小結 38
第3章 Facebook中的自我網絡結構及連邊強度 40
3.1 引言 40
3.2 在Facebook中對連邊強度進行建模 41
3.2.1 基礎工作 41
3.2.2 Facebook 數據及分析的方法論 43
3.2.3 Facebook中連邊強度的組閤 45
3.2.4 預測連邊強度的模型 48
3.3 Facebook中自我網絡的結構 53
3.3.1 用於在綫自我網絡分析的大規模數據集 54
3.3.2 Facebook中自我網絡的層級結構 59
3.3.3 驗證 63
3.3.4 討論 65
3.4 本章總結和討論 66
第4章 Twitter中自我網絡的結構 68
4.1 介紹 68
4.2 對於Twitter自我網絡分析的數據集 68
4.2.1 Twitter用戶的活躍時長 69
4.2.2 Twitter的社交相關用戶 71
4.3 Twitter中自我網絡的結構屬性 75
4.3.1 Twitter自我網絡的尺寸對認知限製的影響 75
4.3.2 Twitter中自我網絡層級 77
4.3.3 Facebook和Twitter之間的比較 80
4.4 總結和討論 81
第5章 Twitter自我網絡的進化動力學 83
5.1 個人資料 83
5.2 社交網絡圖的演化屬性 83
5.3 Twitter自我網絡的動態分析方法 87
5.4 Twitter自我網絡的動態特性 89
5.4.1 個人社交關係的演化 89
5.4.2 用戶離開Twitter 91
5.4.3 無嚮交流 92
5.4.4 社團活躍度 94
5.4.5 社交容量和自我網絡層級的動態性 95
5.4.6 自我網絡更換頻率 98
5.5 總結和討論 102
第6章 結論 105
6.1 介紹 105
6.2 自我網絡結構和信息擴散 105
6.3 研究方嚮 109
6.4 本書裏程碑 112
參考文獻 114
譯 者 序
20世紀末,大量研究人員發現,真實世界並不像看上去那麼隨機,而且可以將其對應到圖論中,利用圖論的知識來分析和解釋現實生活的現象。因此,復雜網絡的研究應運而生。
在復雜網絡中,節點可以代錶復雜係統中的獨立元素,而節點間的連接關係則可以用連邊來映射。例如,在社交網絡中,如果把網絡中的用戶看成社交網絡中的節點,那麼這些用戶則是通過相互之間的關注或其他交互行為構成瞭整個社交網絡。網絡自身帶有的拓撲結構和網絡特性等特徵可以作為研究人員瞭解和揭示網絡本質的途徑。
現如今,人們的生活已經離不開互聯網瞭,而互聯網上的在綫社交網絡尤其與人們的生活密切相關。其中,Facebook和Twitter 作為世界上最大的兩個在綫社交網絡,為研究人員瞭解和揭示網絡中的有趣現象提供瞭很好的研究對象,並且還可以通過研究結果不斷地改進和優化現有的應用。
本書的作者 Valerio Arnaboldi等,從復雜網絡中用到的圖論知識和分析方法入手,討論瞭 Facebook和Twitter 中自我網絡的結構屬性,並與其他社交網絡進行瞭比較;另外,從動力學的角度分析瞭Twitter中的自我網絡,並為在綫社交網絡的改進和優化提齣瞭一些建議。最後,還討論瞭如何發現在綫社交網絡中的結構屬性以拓展對社交網絡的分析並建立在綫服務。
在本書的翻譯過程中,我的師弟程之投入瞭巨大的精力,在此錶示感謝。最後,感謝電子工業齣版社給瞭我們這次機會,感謝
感謝作者Valerio Arnaboldi和他的團隊,為我們帶來如此美妙的研究方嚮和分析方法;感謝我的師弟程之為翻譯付齣的寶貴時間和精力;感謝SwiftGG的riven和其他小夥伴們的幫助;感謝電子工業齣版社的張迪編輯以及其他幕後工作者的辛勤勞動;最後還要感謝傢人,感謝你們的理解和支持。
在本書的翻譯和校對過程中,譯者雖已盡力將作者的意思以通俗易懂的方式錶述齣來,但畢竟能力有限,問題和疏漏在所難免,懇請各位讀者批評指正。
淩非
2017年1月
前 言
毫無疑問,在綫社交網絡(OSNs),如Facebook和Twitter,正在改變我們的溝通方式,同時它們也管理著我們的社交生活。智能手機的普及使網絡與現實世界(Cyber-Physical World)的社交聯係變得難以區分,且互相依賴。
在這種場景下,在綫社交網絡的分析成為瞭有趣且重要的話題,原因有二。(1)透過在綫社交網絡中用戶的行為可以深刻理解人類的社交行為。眾所周知,人們的社交容量是受限於他們的認知和時間資源的。同時,在綫社交網絡在這方麵的影響仍然是未知的。(2)在綫社交網絡是用戶與信息在網絡與現實交織的世界中首要的溝通方式。發現在綫社交網絡中人類關係的關鍵特性可能對設計以用戶為中心的服務大有幫助。
本書中,我們研究並分析瞭個人社交網絡(自我網絡,Ego Networks)的結構屬性。本書采用多學科的方法來研究社交網絡,並討論瞭該領域內最新的研究成果。結果顯示,Facebook和Twitter中的自我網絡與先前離綫環境下發現的結構屬性相同。這就意味著,盡管在綫社交網絡使人們在生活中有巨大的改變,但也不能提升人們的社交容量,因為這顯然受限於人的大腦容量。此外,由於Facebook和Twitter的大量數據,因此與離綫社交網絡相比,在綫社交網絡可能會發現自我網絡中的新屬性。這意味著,我們可以采用大規模在綫溝通數據集的研究方法來深化人類社交行為的知識。實際上,在綫數據呈現瞭一種研究人類行為的微觀視角。
最後,本書也討論瞭如何發現在綫社交網絡中的結構屬性以拓展對社交網絡的分析和建立未來的在綫服務。我們也討論瞭幾個分析信息擴散的例子,並在本書中提齣瞭基於全新溝通平颱的研究成果,即特定的在綫社交網絡的結構屬性是如何影響該類服務的關鍵特徵的。
推薦閱讀
評分推薦閱讀
評分很好
評分很好
評分嗬嗬,100多頁的書看似挺豐富
評分嗬嗬,100多頁的書看似挺豐富
評分很好
評分推薦閱讀
評分嗬嗬,100多頁的書看似挺豐富
在綫社交網絡:在Facebook和Twitter個體關係網中發現的人類認知約束 pdf epub mobi txt 電子書 下載