編輯推薦
本書則是華為公司針對華為ICT學院大數據方嚮的在讀學生,專門組織閤作夥伴和華為公司內部員工開發的標準化教材,這套教材的目的在於循序漸進地幫助華為ICT學院大數據方嚮的學生掌握大數據技術的基本原理與應用場景,能夠在麵對真實的業務場景時,獨立完成大數據平颱的搭建、維護及故障的處理。
內容簡介
本書是華為ICT學院大數據技術官方教材,旨在幫助學生進一步學習大數據的基本概念、技術原理,以及大數據平颱的搭建和使用。
本書從大數據的概念和特徵開始講起,首先讓讀者對大數據有一個感性的認識;接下來結閤大數據平颱的各個功能模塊,詳細介紹大數據的存儲、處理、分析、可視化等原理和操作;對大數據在各種行業中的應用加以敘述,讓讀者更加充分地感受到大數據應用的價值。
除華為ICT學院的學生之外,本書同樣適閤正在備考HCNA-Big Data認證,或者正在參加HCNA-Big Data技術培訓的學員進行閱讀和參考。其他有誌進入ICT行業的人員和大數據技術愛好者也可以通過閱讀本書,加深自己對大數據技術的理解。
作者簡介
多年的Hadoop大數據平颱企業業務應用實踐,具有豐富的Hadoop平颱運維,開發與分析實戰經驗 2. 主導過多個大型大數據項目的開發,如維達國際大數據平颱、中國商品進齣口交易中心ETL日誌分析大數據平颱 3、多年大數據與數據挖掘等IT領域技術培訓經驗,豐富的課程設計和授課經驗。
目錄
第1章 大數據概述 0
1.1 大數據的概念與價值 2
1.1.1 什麼是大數據 2
1.1.2 大數據的來源 4
1.1.3 大數據有什麼價值 5
1.1.4 如何挖掘企業大數據的價值 6
1.2 大數據的關鍵技術 7
1.2.1 大數據采集、預處理與存儲管理 7
1.2.2 大數據分析與挖掘 8
1.2.3 數據可視化 9
1.3 大數據産業 9
1.3.1 數據提供 9
1.3.2 技術提供 9
1.3.3 服務提供 10
1.4 大數據應用場景 10
1.5 本章總結 11
練習題 12
第2章 Hadoop大數據處理平颱 14
2.1 Hadoop平颱概述 16
2.1.1 Hadoop簡介 16
2.1.2 Hadoop的特性 17
2.1.3 Hadoop應用現狀 17
2.1.4 Hadoop版本及相關平颱 18
2.2 Hadoop生態係統 18
2.2.1 Hadoop存儲係統(HDFS&HBase;) 18
2.2.2 Hadoop計算框架(MapReduce&YARN;) 19
2.2.3 Hadoop數據倉庫(Hive) 20
2.2.4 Hadoop數據轉換與日誌處理(Sqoop&Flume;) 20
2.2.5 Hadoop應用協調與工作流(ZooKeeper&Oozie;) 20
2.2.6 大數據安全技術(Kerberos&LDAP;) 21
2.2.7 大數據即時查詢與搜索(Impala&Solr;) 21
2.2.8 大數據消息訂閱(Kafka) 21
2.3 Hadoop安裝部署 22
2.3.1 Hadoop規劃部署 22
2.3.2 Hadoop的安裝方式 23
2.4 華為FusionInsight HD安裝部署 26
2.4.1 FusionInsight HD簡介 26
2.4.2 FusionInsight HD集成設計 28
2.4.3 FusionInsight HD安裝部署 33
2.4.4 FusionInsight HD重要參數配置 41
2.5 本章總結 42
練習題 43
第3章 大數據存儲技術(HDFS) 44
3.1 概述 46
3.1.1 分布式文件係統的概念與作用 47
3.1.2 HDFS概述 47
3.2 HDFS的相關概念 48
3.2.1 塊 48
3.2.2 NameNode 49
3.2.3 Secondary NameNode 50
3.2.4 DataNode 51
3.3 HDFS體係架構與原理 52
3.3.1 HDFS體係架構 52
3.3.2 HDFS的高可用機製 52
3.3.3 HDFS的目錄結構 54
3.3.4 HDFS的數據讀寫過程 57
3.4 HDFS接口及其在FusionInsight HD編程中的實踐 58
3.4.1 HDFS常用Shell命令 59
3.4.2 HDFS的Web界麵 60
3.4.3 HDFS的Java接口及應用實例 62
3.5 本章總結 67
練習題 67
第4章 大數據離綫計算框架(MapReduce & YARN) 70
4.1 MapReduce技術原理 72
4.1.1 MapReduce概述 73
4.1.2 Map函數與Reduce函數 73
4.2 YARN技術原理 74
4.2.1 YARN的概述與應用 74
4.2.2 YARN的架構 75
4.2.3 MapReduce的計算過程 76
4.2.4 YARN的資源調度 78
4.3 FusionInsight HD中MapReduce的應用 78
4.3.1 WordCount實例分析 78
4.3.2 MapReduce編程實踐 79
4.4 本章總結 85
練習題 86
第5章 大數據數據庫(HBase) 88
5.1 HBase概述 90
5.1.1 HBase簡介 90
5.1.2 HBase與關係型數據庫的區彆 91
5.1.3 HBase的應用場景 92
5.2 HBase的架構原理 92
5.2.1 HBase的數據模型 92
5.2.2 錶和Region 93
5.2.3 HBase的係統架構與功能組件 94
5.2.4 HBase的讀寫流程 96
5.2.5 HBase的Compaction過程 97
5.3 FusionInsight HD中HBase的編程實踐 98
5.3.1 FusionInsight HD中HBase的常用參數配置 98
5.3.2 HBase的常用Shell命令 100
5.3.3 HBase常用的Java API及應用實例 103
5.4 本章總結 118
練習題 118
第6章 大數據數據倉庫(Hive) 120
6.1 Hive概述 122
6.1.1 Hive簡介和應用 122
6.1.2 Hive的特性 123
6.1.3 Hive與傳統數據倉庫的區彆 124
6.2 Hive的架構和數據存儲 124
6.2.1 Hive的架構原理 124
6.2.2 Hive的數據存儲模型 127
6.2.3 HiveQL編程 128
6.3 FusionInsight HD中Hive應用實踐 132
6.3.1 FusionInsight HD中Hive的常用參數配置 132
6.3.2 加載數據到Hive 133
6.3.3 使用HiveQL進行數據分析 135
6.4 本章總結 139
練習題 139
第7章 大數據數據轉換(Sqoop與Loader) 142
7.1 Sqoop概述 144
7.1.1 Sqoop簡介與應用 145
7.1.2 Sqoop的功能與特性 145
7.1.3 Sqoop與傳統ETL的區彆 146
7.2 FusionInsight HD中Loader的應用實踐 146
7.2.1 FusionInsight HD中Loader與Sqoop的對比 147
7.2.2 FusionInsight HD中Loader的參數配置 148
7.2.3 使用Loader進行數據轉換 149
7.2.4 Loader的常用Shell命令 150
7.2.5 Loader應用實踐 152
7.3 本章總結 153
練習題 154
第8章 大數據日誌處理(Flume) 156
8.1 Flume概述 158
8.1.1 Flume簡介與應用 158
8.1.2 Flume的功能與特性 161
8.1.3 Flume與其他主流開源日誌收集係統的區彆 162
8.2 FusionInsight HD中Flume的應用實踐 162
8.2.1 FusionInsight HD中Flume的常用參數配置 163
8.2.2 Flume常用的Shell命令 164
8.2.3 Flume與Kafka結閤進行日誌處理 165
8.3 本章總結 168
練習題 169
第9章 大數據實時計算框架(Spark) 170
9.1 Spark概述 172
9.1.1 Spark的概述與應用 173
9.1.2 Scala語言介紹 174
9.1.3 Spark生態係統組件 174
9.1.4 Spark與Hadoop的對比 175
9.2 Spark技術架構 176
9.2.1 Spark的運行原理 176
9.2.2 RDD概念與原理 177
9.2.3 Spark的三種部署方式 181
9.2.4 使用開發工具測試Spark 182
9.3 FusionInsight HD中Spark應用實踐 183
9.3.1 運行Spark Shell 183
9.3.2 進行Spark RDD操作 184
9.3.3 使用Spark客戶端工具運行Spark程序 185
9.4 Spark Streaming 188
9.4.1 Spark Streaming的設計思想 188
9.4.2 Spark Streaming的應用實例 189
9.5 Spark SQL 191
9.5.1 Spark SQL的功能 191
9.5.2 FusionInsight HD中Spark SQL的應用實例 192
9.6 Spark MLlib 193
9.6.1 機器學習簡介 193
9.6.2 Spark MLlib的功能 194
9.7 Spark GraphX 194
9.7.1 圖計算簡介 194
9.7.2 Spark GraphX功能簡介 195
9.8 本章總結 195
練習題 196
第10章 大數據流計算 198
10.1 流計算概述 200
10.1.1 靜態數據和流數據 201
10.1.2 流計算的概念 201
10.1.3 MapReduce和流計算 202
10.1.4 流計算框架 202
10.2 流計算的處理流程 203
10.2.1 數據實時采集 203
10.2.2 數據實時計算 203
10.2.3 數據實時查詢 203
10.3 Streaming流計算 204
10.3.1 Streaming簡介 204
10.3.2 Streaming的特點 206
10.3.3 Streaming在FusionInsight HD上的應用實踐 208
10.3.4 Spark Streaming與Streaming的差異 212
10.4 本章總結 213
練習題 213
第11章 數據可視化 216
11.1 可視化概述 218
11.1.1 數據可視化簡介 219
11.1.2 數據可視化的重要性 219
11.1.3 可視化的發展曆程 219
11.1.4 數據可視化的過程 221
11.2 可視化工具 222
11.2.1 入門級工具(Excel) 222
11.2.2 普通工具(R語言) 222
11.2.3 高級工具(Tableau和QlikView) 223
11.3 可視化的典型應用 223
11.3.1 可視化在醫學上的應用 223
11.3.2 可視化在工程中的應用 224
11.3.3 可視化在互聯網的應用 225
11.4 本章總結 225
練習題 226
第12章 大數據行業應用 228
12.1 大數據在金融行業的應用 230
12.2 大數據在電信行業的應用 232
12.3 大數據在公安係統的應用 236
12.4 大數據在互聯網行業的應用 237
12.5 本章總結 237
練習題 238
術語錶 240
參考文獻 252
大數據原理與技術 下載 mobi epub pdf txt 電子書