深度學習

深度學習 pdf epub mobi txt 电子书 下载 2025

董豪 等
圖書標籤:
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
1 深度学习简介1
1.1 人工智能、机器学习和深度学习 1
1.1.1 引言 1
1.1.2 人工智能、机器学习和深度学习三者的关系 2
1.2 神经网络 3
1.2.1 感知器 3
1.2.2 激活函数 5
1.2.3 损失函数 8
1.2.4 梯度下降和随机梯度下降 8
1.2.5 反向传播算法简述 11
1.2.6 其他神经网络 12
1.3 学习方法建议 13
1.3.1 网络资源 13
1.3.2 TensorFlow 官方深度学习教程 14
1.3.3 开源社区 15
1.4 TensorLayer 15
1.4.1 深度学习框架概况 15
1.4.2 TensorLayer 概括 16
1.4.3 实验环境配置 17
2 多层感知器19
2.1 McCulloch-Pitts 神经元模型 19
2.1.1 人工神经网络到底能干什么?到底在干什么 21
2.1.2 什么是激活函数?什么是偏值 22
2.2 感知器 23
2.2.1 什么是线性分类器 24
2.2.2 线性分类器有什么优缺点 26
2.2.3 感知器实例和异或问题(XOR 问题) 26
2.3 多层感知器 30
2.4 实现手写数字分类 32
2.5 过拟合 40
2.5.1 什么是过拟合 40
2.5.2 Dropout 41
2.5.3 批规范化 42
2.5.4 L1、L2 和其他正则化方法 42
2.5.5 Lp 正则化的图形化解释 44
2.6 再实现手写数字分类 46
2.6.1 数据迭代器 46
2.6.2 通过all_drop 启动与关闭Dropout 47
2.6.3 通过参数共享实现训练测试切换 50
3 自编码器54
3.1 稀疏性 54
3.2 稀疏自编码器 56
3.3 实现手写数字特征提取 59
3.4 降噪自编码器 65
3.5 再实现手写数字特征提取 68
3.6 堆栈式自编码器及其实现 72
4 卷积神经网络80
4.1 卷积原理 80
4.1.1 卷积操作 81
4.1.2 张量 84
4.1.3 卷积层 85
4.1.4 池化层 87
4.1.5 全连接层 89
4.2 经典任务 90
4.2.1 图像分类 90
4.2.2 目标检测 91
4.2.3 语义分割 94
4.2.4 实例分割 94
4.3 经典卷积网络 95
4.3.1 LeNet 95
4.3.2 AlexNet 96
4.3.3 VGGNet 96
4.3.4 GoogLeNet 98
4.3.5 ResNet 99
4.4 实现手写数字分类 100
4.5 数据增强与规范化 104
4.5.1 数据增强 104
4.5.2 批规范化 106
4.5.3 局部响应归一化 107
4.6 实现CIFAR10 分类 108
4.6.1 方法1:tl.prepro 做数据增强 108
4.6.2 方法2:TFRecord 做数据增强 114
4.7 反卷积神经网络 120
5 词的向量表达121
5.1 目的与原理 121
5.2 Word2Vec 124
5.2.1 简介 124
5.2.2 Continuous Bag-Of-Words(CBOW)模型 124
5.2.3 Skip Gram(SG)模型 129
5.2.4 Hierarchical Softmax 132
5.2.5 Negative Sampling 135
5.3 实现Word2Vec 136
5.3.1 简介 136
5.3.2 实现 136
5.4 重载预训练矩阵 144
6 递归神经网络148
6.1 为什么需要它 148
6.2 不同的RNNs 151
6.2.1 简单递归网络 151
6.2.2 回音网络 152
6.3 长短期记忆 153
6.3.1 LSTM 概括 153
6.3.2 LSTM 详解 157
6.3.3 LSTM 变种 159
6.4 实现生成句子 160
6.4.1 模型简介 160
6.4.2 数据迭代 163
6.4.3 损失函数和更新公式 164
6.4.4 生成句子及Top K 采样 167
6.4.5 接下来还可以做什么 169
7 深度增强学习171
7.1 增强学习 172
7.1.1 概述 172
7.1.2 基于价值的增强学习 173
7.1.3 基于策略的增强学习 176
7.1.4 基于模型的增强学习 177
7.2 深度增强学习 179
7.2.1 深度Q 学习 179
7.2.2 深度策略网络 181
7.3 更多参考资料 187
7.3.1 书籍 187
7.3.2 在线课程 187
8 生成对抗网络188
8.1 何为生成对抗网络 189
8.2 深度卷积对抗生成网络 190
8.3 实现人脸生成 191
8.4 还能做什么 198
9 高级实现技巧202
9.1 与其他框架对接 202
9.1.1 无参数层 203
9.1.2 有参数层 203
9.2 自定义层 204
9.2.1 无参数层 204
9.2.2 有参数层 205
9.3 建立词汇表 207
9.4 补零与序列长度 209
9.5 动态递归神经网络 210
9.6 实用小技巧 211
9.6.1 屏蔽显示 211
9.6.2 参数名字前缀 212
9.6.3 获取特定参数 213
9.6.4 获取特定层输出 213
10 实例一:使用预训练卷积网络214
10.1 高维特征表达 214
10.2 VGG 网络 215
10.3 连接TF-Slim 221
11 实例二:图像语义分割及其医学图像应用225
11.1 图像语义分割概述 225
11.1.1 传统图像分割算法简介 227
11.1.2 损失函数与评估指标 229
11.2 医学图像分割概述 230
11.3 全卷积神经网络和U-Net 网络结构 232
11.4 医学图像应用:实现脑部肿瘤分割 234
11.4.1 数据与数据增强 235
11.4.2 U-Net 网络 238
11.4.3 损失函数 239
11.4.4 开始训练 241
12 实例三:由文本生成图像244
12.1 条件生成对抗网络之GAN-CLS 245
12.2 实现句子生成花朵图片 246
13 实例四:超高分辨率复原260
13.1 什么是超高分辨率复原 260
13.2 网络结构 261
13.3 联合损失函数 264
13.4 训练网络 269
13.5 使用测试 277
14 实例五:文本反垃圾280
14.1 任务场景 280
14.2 网络结构 281
14.3 词的向量表示 282
14.4 Dynamic RNN 分类器 283
14.5 训练网络 284
14.5.1 训练词向量 284
14.5.2 文本的表示 290
14.5.3 训练分类器 291
14.5.4 模型导出 296
14.6 TensorFlow Serving 部署 299
14.7 客户端调用 301
14.8 其他常用方法 306
中英对照表及其缩写309
参考文献316
· · · · · · (收起)

具体描述

《深度學習:一起玩轉TensorLayer》由TensorLayer創始人領銜寫作,TensorLayer社區眾包完成,作者全部來自一綫人工智能研究員和工程師,內容不僅覆蓋瞭傳統書籍都有的多層感知器、捲積網絡、遞歸網絡及增強學習等,還著重講解瞭生成對抗網絡、學習方法和實踐經驗,配有若乾産品級彆的實例。讀者將會從零開始學會目前最新的深度學習技術,以及使用TL實現各種應用。

《深度學習:一起玩轉TensorLayer》以通俗易懂的方式講解深度學習技術,同時配有實現方法教學,麵嚮深度學習初學者、進階者,以及希望長期從事深度學習研究和産品開發的深度學習工程師和TensorFlow用戶。

用户评价

评分

评分

##写的真心不好。拿这个来入门太头大了,里面例子有的都有问题,环境配置还有坑都没讲明白就一锅炖了。。。单纯的把后面的例子做一本书、讲透讲明白多好,现在后面的就是把加了点注释而已,整的前后都是一锅粥重点不突出。

评分

评分

评分

评分

##就是tensorlayer没有什么开源项目在用啊

评分

评分

tensorlayer这个库很好用,,不过这本书更多是各种资料的索引和API手册(入门看这本书是不行的),而且作者好像并不会写书面语。。。 感觉不值99元(虽然我是打折时买的。。)

评分

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有