物理學中的群論

物理學中的群論 pdf epub mobi txt 电子书 下载 2025

美吳基東 著
圖書標籤:
  • 物理學
  • 群論
  • 數學物理
  • 對稱性
  • 量子力學
  • 固體物理
  • 粒子物理
  • 高等教育
  • 教材
  • 理論物理
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 润轩泽辕图书专营店
出版社: 世界图书出版公司
ISBN:9787510029554
商品编码:28213720927
包装:平装
出版时间:2011-01-01

具体描述

基本信息

書名:物理學中的群論

:49.00元

作者:(美)吳基東

齣版社:世界圖書齣版公司

齣版日期:2011-01-01

ISBN:9787510029554

字數:

頁碼:

版次:1

裝幀:平裝

開本:24開

商品重量:0.440kg

編輯推薦


內容提要


  group theory provides the natural mathematical language toformulate symmetry principles and to derive their consequences inmathematics and in physics. the 'special functions' of mathematicalphysics, which pervade mathematical analysis,classical physics, andquantum mechanics, invariably originate from underlying symmetriesof the problem although the traditional presentation of such topicsmay not expressly emphasize this universal feature. moderndevelopments in all branches of physics are putting more and moreemphasis on the role of symmetries of the underlying physicalsystems. thus the use of group theory has bee increasinglyimportant in recent years. however, the incorporation of grouptheory into the undergraduate or graduate physics curriculum ofmost universities has not kept up with this development. at best,this subject is offered as a special topic course, catering to arestricted class of students. symptomatic of this unfortunate gapis the lack of suitable textbooks on general group-theoreticalmethods in physics for all serious students of experimental andtheoretical physics at the beginning graduate and advancedundergraduate level. this book is written to meet precisely thisneed.
  there already exist, of course, many books on group theory andits applications in physics. foremost among these are the oldclassics by weyl, wigner, and van der waerden. for applications toatomic and molecular physics, and to crystal lattices in solidstate and chemical physics, there are many elementary textbooksemphasizing point groups, space groups, and the rotation group.reflecting the important role played by group theory in modernelementary particle theory, many current books expound on thetheory of lie groups and lie algebras with emphasis suitable forhigh energy theoretical physics. finally, there are several usefulgeneral texts on group theory featuring prehensiveness andmathematical rigor written for the more mathematically orientedaudience. experience indicates, however, that for most students, itis difficult to find a suitable modern introductory text which isboth general and readily understandable.

目錄


preface
chapter 1 introduction
 1.1 particle on a one-dimensional lattice
 1.2 representations of the discrete translation operators
 1.3 physical consequences of translational symmetry
 1.4 the representation functions and fourier analysis
 1.5 symmetry groups of physics
chapter 2 basic group theory
 2.1 basic definitions and simple examples
 2.2 further examples, subgroups
 2.3 the rearrangement lemma and the symmetric (permutation)group
 2.4 classes and invariant subgroups
 2.5 cosets and factor (quotient) groups
 2.6 homomorphisms
 2.7 direct products
 problems
chapter 3 group representations
 3.1 representations
 3.2 irreducible, inequivalent representations
 3.3 unitary representations
 3.4 schur's lemmas
 3.5 orthonormality and pleteness relations of irreduciblerepresentation matrices
 3.6 orthonormality and pleteness relations of irreduciblecharacters
 3.7 the regular representation
 3.8 direct product representations, clebsch-gordancoefficients
 problems
chapter 4 general properties of irreducible vectors andoperators
 4.1 irreducible basis vectors
 4.2 the reduction of vectors--projection operators for irreducibleponents
 4.3 irreducible operators and the wigner-eckart theorem
 problems
chapter 5 representations of the symmetric groups
 5.1 one-dimensional representations
 5.2 partitions and young diagrams
 5.3 symmetrizers and anti-symmetrizers of young tableaux
 5.4 irreducible representations of sn
 5.5 symmetry classes of tensors
 problems
chapter 6 one-dimensional continuous groups
 6.1 the rotation group so(2)
 6.2 the generator of so(2)
 6.3 irreducible representations of so(2)
 6.4 invariant integration measure, orthonormality and pletenessrelations
 6.5 multi-valued representations
 6.6 continuous translational group in one dimension
 6.7 conjugate basis vectors
 problems
chapter 7 rotations in three-dimensional space--the groupso(3)
 7.1 description of the group so(3)
  7.1.1 the angle-and-axis parameterization
  7.1.2 the euler angles
 7.2 one parameter subgroups, generators, and the lie algebra
 7.3 irreducible representations of the so(3) lie algebra
 7.4 properties of the rotational matrices dj(a, fl, 7)
 7.5 application to particle in a central potential
  7.5.1 characterization of states
  7.5.2 asymptotic plane wave states
  7.5.3 partial wave deposition
  7.5.4 summary
 7.6 transformation properties of wave functions andoperators
 7.7 direct product representations and their reduction
 7.8 irreducible tensors and the wigner-eckart theorem
 problems
chapter 8 the group su(2) and more about so(3)
 8.1 the relationship between so(3) and su(2)
 8.2 invariant integration
 8.3 Orthonormality and pleteness relations of dj
 8.4 projection operators and their physical applications
  8.4.1 single particle state with spill
  8.4.2 two particle states with spin
  8.4.3 partial wave expansion for two particle scattering withspin
 8.5 differential equations satisfied by the dj-functions
 8.6 group theoretical interpretation of spherical harmonics
  8.6.1 transformation under rotation
  8.6.2 addition theorem
  8.6.3 deposition of products of yim with the samearguments
  8.6.4 recursion formulas
  8.6.5 symmetry in m
  8.6.6 Orthonormality and pleteness
  8.6.7 summary remarks
 8.7 multipole radiation of the electromagic field
 problems
chapter 9 euclidean groups in two- and three-dimensionalspace
 9.1 the euclidean group in two-dimensional space e2
 9.2 unitary irreducible representations of e2--theangular-momentum basis
 9.3 the induced representation method and the plane-wavebasis
 9.4 differential equations, recursion formulas,and additiontheorem of the bessel function
 9.5 group contraction--so(3) and e2
 9.6 the euclidean group in three dimensions: e3
 9.7 unitary irreducible representations of e3 by the inducedrepresentation method
 9.8 angular momentum basis and the spherical bessel function
 problems
chapter 10 the lorentz and poincarie groups, and space-timesymmetries
 10.1 the lorentz and poincare groups
  10.1.1 homogeneous lorentz transformations
  10.1.2 the proper lorentz group
  10.1.3 deposition of lorentz transformations
  10.1.4 relation of the proper lorentz group to sl(2)
  10.1.5 four-dimensional translations and the poincare group
 10.2 generators and the lie algeebra
 10.3 irreducible representations of the proper lorentz group
  10.3.1 equivalence of the lie algebra to su(2) x su(2)
  10.3.2 finite dimensional representations
  10.3.3 unitary representations
 10.4 unitary irreducible representations of the poincaregroup
  10.4.1 null vector case (pu= 0)
  10.4.2 time-like vector case (c1>3 0)
  10.4.3 the second casimir operator
  10.4.4 light-like case (c1 = 0)
  10.4.5 space-like case (c1<0)
  10.4.6 covariant normalization of basis states and integrationmeasure
 10.5 relation between representations of the lorentz and poincaregroups--relativistic wave functions, fields, and waveequations
  10.5.1 wave functions and field operators
  10.5.2 relativistic wave equations and the plane waveexpansion
  10.5.3 the lorentz-poincare connection
  10.5.4 'deriving' relativistic wave equations
 problems
chapter 11 space inversion invariance
 11.1 space inversion in two-dimensional euclidean space
  11.1.1 the group 0(2)
  11.1.2 irreducible representations of 0(2)
  11.1.3 the extended euclidean group e2 and its irreduciblerepresentations
 11.2 space inversion in three-dimensional euclidean space
  11.2.1 the group 0(3) and its irreducible representations
  11.2.2 the extended euclidean group e3 and its irreduciblerepresentations
 11.3 space inversion in four-dimensional minkowski space
  11.3.1 the plete lorentz group and its irreduciblerepresentations
  11.3.2 the extended poincare group and its irreduciblerepresentations
 11.4 general physical consequences of space inversion
  11.4.1 eigenstates of angular momentum and parity
  11.4.2 scattering amplitudes and electromagic multipoletransitions
 problems
chapter 12 time reversal invariance
 12.1 preliminary discussion
 12.2 time reversal invariance in classical physics
 12.3 problems with linear realization of timereversaltransformation
 12.4 the anti-unitary time reversal operator
 12.5 irreducible representations of the full poincare group in thetime-like case
 12.6 irreducible representations in the light-like case (c1 = c2 =n0)
 12.7 physical consequences of time reversal invariance
  12.7.1 time reversal and angular momentum eigenstates
  12.7.2 time-reversal symmetry of transition amplitudes
  12.7.3 time reversal invariance and perturbation amplitudes
 problems
chapter 13 finite-dimensional representations of the classicalgroups
 13.1 gl(m): fundamental representations and the associated vectorspaces
 13.2 tensors in v x v, contraction, and gl(m)transformations
 13.3 irreducible representations of gl(m) on thespace of generaltensors
 13.4 irreducible representations of other classical lineargroups
  13.4.1 unitary groups u(m) and u(m , m_)
  13.4.2 special linear groups sl(m) and special unitary groupssu(m , m_)
  13.4.3 the real orthogonal group o(m ,m_; r) and the special realorthogonal group so(m , m_; r)
 13.5 concluding remarks
 problems
appendix i notations and symbols
 i.1 summation convention
 i.2 vectors and vector indices
 i.3 matrix indices
appendix ii summary of linear vector spaces
 ii.1 linear vector space
 ii.2 linear transformations (operators) on vector spaces
 ii.3 matrix representation of linear operators
 ii.4 dual space, adjoint operators
 ii.5 inner (scalar) product and inner product space
 ii.6 linear transformations (operators) on inner productspaces
appendix iii group algebra and the reduction of regularrepresentation
 iii. 1 group algebra
 1ii.2 left ideals, projection operators
 iii.3 idempotents
 iii.4 plete reduction of the regular representation
appendix iv supplements to the theory of symmetric groups sn
appendix v clebsch-gordan coefficients and sphericalharmonics
appendix vi rotational and lorentz spinors
appendix vii unitary representations of the proper lorentzgroup
appendix viii anti-linear operators
references and bibliography
index

作者介紹


文摘


序言



用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有