【XH】 數據挖掘與管理實踐 pdf epub mobi txt 電子書 下載 2025

圖書介紹


【XH】 數據挖掘與管理實踐


宋宇辰,孟海東 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2025-01-11

類似圖書 點擊查看全場最低價

店鋪: 愛尚美潤圖書專營店
齣版社: 冶金工業齣版社
ISBN:9787502454579
商品編碼:29477339038
包裝:平裝
齣版時間:2010-12-01

【XH】 數據挖掘與管理實踐 epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

相關圖書



【XH】 數據挖掘與管理實踐 epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

【XH】 數據挖掘與管理實踐 pdf epub mobi txt 電子書 下載 2025



具體描述

基本信息

書名:數據挖掘與管理實踐

定價:20.00元

作者:宋宇辰,孟海東

齣版社:冶金工業齣版社

齣版日期:2010-12-01

ISBN:9787502454579

字數:

頁碼:181

版次:1

裝幀:平裝

開本:16開

商品重量:0.222kg

編輯推薦


內容提要


《數據挖掘與管理實踐》對數據挖掘技術及其在管理決策中的應用進行瞭較深入的研究。書中重點介紹瞭聚類分析和關聯分析的理論基礎、算法設計、分析與對比。全書以圖書館現代化管理為主綫,探索瞭如何對管理數據實施數據挖掘、實現管理決策的全過程,包括數據采集、數據預處理、數據挖掘與分析、挖掘結果的分析,並提齣相應的決策建議;根據一係列應用實施過程,總結齣圖書館現代化管理應用數據挖掘的三層決策構架,即數據層、技術層和決策層。
《數據挖掘與管理實踐》適閤從事信息分析、數據挖掘的人員,企業和部門的管理人員,從事管理學和情報學研究的學者及相關專業的研究生閱讀參考。

目錄


1 概論
1.1 背景
1.1.1 國外研究與應用
1.1.2 研究與應用
1.2 意義
1.3 內容
1.3.1 聚類分析
1.3.2 關聯分析
1.3.3 圖書館數據搜集與預處理
1.3.4 實現數據挖掘技術在圖書館中的應用

2 數據挖掘技術
2.1 數據挖掘係統的組成
2.2 數據挖掘的定義
2.3 數據挖掘的任務
2.4 數據挖掘的功能
2.4.1 自動預測趨勢和行為
2.4.2 關聯分析
2.4.3 聚類分析
2.4.4 概念描述
2.4.5 偏差檢測
2.5 數據挖掘的實施
2.5.1 數據挖掘環境
2.5.2 數據挖掘的過程
2.6 數據挖掘的難點
2.6.1 動態變化的數據
2.6.2 噪聲
2.6.3 數據不完整
2.6.4 冗餘信息
2.6.5 數據稀疏
2.6.6 超大數據量
2.7 數據挖掘的主要應用領域

3 聚類分析及係統功能
3.1 聚類算法簡介
3.1.1 聚類算法的一般分類
3.1.2 噪聲與孤立點
3.1.3 聚類算法的典型要求
3.2 新聚類算法理論研究
3.2.1 新聚類算法的整體思路
3.2.2 新聚類算法的相關定義
3.2.3 新聚類算法的算法描述
3.3 新聚類算法實驗分析
3.3.1 不同尺寸和密度的簇聚類效果實驗
3.3.2 埋藏在“噪聲”中的簇聚類效果實驗
3.3.3 實驗結果總結
3.4 新聚類算法係統功能
3.4.1 菜單欄介紹
3.4.2 屬性相關性檢驗窗口
3.4.3 數據標準化窗口
3.4.4 聚類窗口
3.4.5 模式評估窗口
3.5 新聚類算法聚類過程解析
3.5.1 數據選擇
3.5.2 數據預處理
3.5.3 數據變換
3.5.4 數據挖掘
3.5.5 結果解釋

4 關聯分析與係統功能
4.1 關聯分析簡介
4.2 Clementine關聯簡介
4.3 新關聯規則算法研究
4.3.1 新關聯規則算法的提齣
4.3.2 新關聯規則算法的相關定義
4.4 新關聯規則算法設計
4.5 新關聯規則係統功能
4.6 新關聯規則挖掘過程解析
4.6.1 數據選擇
4.6.2 數據預處理
4.6.3 數據變換
4.6.4 數據挖掘
4.6.5 數據解釋

5 現代化管理中的聚類應用
5.1 紙質調查問捲數據聚類分析
5.1.1 紙質問捲的設計與數據整理
5.1.2 數據預處理
5.1.3 學科資料需求聚類分析
5.1.4 館藏基本需求聚類分析
5.1.5 讀者藉閱行為聚類分析
5.1.6 圖書館服務滿意度聚類分析
5.1.7 決策建議
5.2 網絡調查數據聚類分析
5.2.1 網絡數據收集與數據整理
5.2.2 數據預處理
5.2.3 商校圖書館人力資源聚類分析
5.2.4 葛校圖書館資源聚類分析
5.2.5 決策建議

6 現代化管理中的關聯應用
6.1 通用圖書館集成係統簡介
6.2 藉閱流通日誌中讀者屬性與圖書類彆的關聯分析
6.2.1 數據收集與數據整理
6.2.2 數據預處理
6.2.3 關聯規則挖掘
6.2.4 挖掘結果分析
6.2.5 決策建議
6.3 藉閱流通日誌中圖書與圖書問的關聯分析
6.3.1 數據收集與數據整理
6.3.2 數據預處理
6.3.3 關聯規則挖掘
6.3.4 挖掘結果分析
6.3.5 決策建議
6.4 讀者藉閱記錄中圖書大類間的DAR關聯分析
6.4.1 數據收集與數據整理
6.4.2 數據預處理
6.4.3 關聯規則挖掘
6.4.4 挖掘結果分析
6.4.5 決策建議
6.5 紙質問捲學科間的DAR關聯分析
6.5.1 數據收集與數據整理
6.5.2 數據預處理
6.5.3 關聯規則挖掘
6.5.4 挖掘結果分析
6.5.5 決策建議

7 結論、建議、展望
7.1 圖書館數據挖掘的決策過程
7.2 新算法達到的功能
7.3 圖書館數據的搜集整理工作
7.4 挖掘結果的分析與建議
7.4.1 調查問捲數據的聚類分析與建議
7.4.2 網絡數據的聚類分析與建議
7.4.3 圖書館集成係統數據的Clementine關聯分析與建議
7.4.4 圖書館集成係統數據的DAR關聯分析與建議
7.4.5 調查問捲館藏資料數據的DAR關聯分析與建議
7.5 展望
附錄
附錄A 圖書館資源建設、利用與服務情況問捲調查
附錄B 高校圖書館信息調查錶
附錄C 圖書藉閱次數統計錶
附錄D 讀者藉閱次數統計錶
參考文獻

作者介紹


宋宇辰,博士,教授,管理科學與工程學會(國傢一級學會)理事。主要從事信息技術、數據挖掘領域的教學和科研工作。2006年10月至2007年10月赴都柏林大學訪問學習。曾齣訪歐洲、亞洲、非洲等國。2008年受邀作為專傢去津巴布韋等國考察經濟管理、信息技術、礦業投資環境。
近年來,主持國傢社會科學基金、國傢自然科學基金、教育部春暉計劃等科研項目,參與完成國傢和省部級等各類課題10餘項。應邀參加國際學術會議多次,2010年應邀主持國際會議分會。在外期刊上發錶論文多篇,其中被SCI、EI檢索收錄10篇。
孟海東,博士,教授。主要從事數據挖掘技術和礦業係統工程領域的教學和科研工作。近年來主持國傢自然科學基金、教育部、內濛古自治區科研項目10餘項。在外學術期刊上發錶論文30餘篇。曾齣訪日本、韓國等國,多次參加國際會議。

文摘


數據挖掘能將涉及圖書館信息係統的各種內部數據和外部信息匯集起來,經過處理和轉換,形成集中統一、隨時可用的決策信息,防止因信息不足造成的錯誤決策。利用數據挖掘係統對決策假設進行審查和驗證,提高決策的可靠度和可行性,達到閤理利用有限資金、優化圖書館資源配置的目的。數據挖掘工具可以從曆史數據中找齣潛在的模式,並在模式的基礎上自動做齣預測,這對啓發圖書館決策者的創新思維、應對信息化社會的挑戰具有重大意義。
(2)改善圖書館的服務模式。
數據挖掘技術對圖書館服務工作的支持主要體現在信息采集和信息谘詢兩個方麵。作為信息鏈的個關鍵環節,信息采集是圖書館係統高效運轉的基礎。隨著齣版物的數量日益增多,載體日益豐富,圖書館信息結構、讀者需求與資金利用的平衡問題越來越不易把握,也令采購工作的決策變得更加復雜。數據挖掘技術可以在分析內部的曆史采購數據、讀者數據、流通數據、反饋信息以及來自外部的各種學科發展信息的基礎上深入瞭解學科的走勢和讀者的需求,幫助采購人員確定采購重點,保障圖書館信息資源體係的科學性和閤理性。應用數據挖掘技術,一方麵可使谘詢館員從海量數據中分析齣事物之間的關聯,挖掘齣隱藏其中的信息規律,形成滿足用戶需求的深層次信息産品;另一方麵,還可以根據用戶的曆史谘詢記錄,分析齣他們的研究方嚮和興趣所在,實現主動的個性化信息服務。
(3)分析與確定讀者需求特徵。
在讀者需求分析活動中,讀者閱讀行為特徵一般都建立在調查研究的基礎上。實際上,讀者閱讀行為完全可以從讀者藉閱的大量數據中挖掘得到。研究中主要考慮的問題包括:不同讀者閱讀圖書的不同科類、圖書資料高利用率麵嚮的群體、讀者細分、讀者身份與閱讀習慣的關係。

序言


1 概論
1.1 背景
1.1.1 國外研究與應用
1.1.2 研究與應用
1.2 意義
1.3 內容
1.3.1 聚類分析
1.3.2 關聯分析
1.3.3 圖書館數據搜集與預處理
1.3.4 實現數據挖掘技術在圖書館中的應用

2 數據挖掘技術
2.1 數據挖掘係統的組成
2.2 數據挖掘的定義
2.3 數據挖掘的任務
2.4 數據挖掘的功能
2.4.1 自動預測趨勢和行為
2.4.2 關聯分析
2.4.3 聚類分析
2.4.4 概念描述
2.4.5 偏差檢測
2.5 數據挖掘的實施
2.5.1 數據挖掘環境
2.5.2 數據挖掘的過程
2.6 數據挖掘的難點
2.6.1 動態變化的數據
2.6.2 噪聲
2.6.3 數據不完整
2.6.4 冗餘信息
2.6.5 數據稀疏
2.6.6 超大數據量
2.7 數據挖掘的主要應用領域

3 聚類分析及係統功能
3.1 聚類算法簡介
3.1.1 聚類算法的一般分類
3.1.2 噪聲與孤立點
3.1.3 聚類算法的典型要求
3.2 新聚類算法理論研究
3.2.1 新聚類算法的整體思路
3.2.2 新聚類算法的相關定義
3.2.3 新聚類算法的算法描述
3.3 新聚類算法實驗分析
3.3.1 不同尺寸和密度的簇聚類效果實驗
3.3.2 埋藏在“噪聲”中的簇聚類效果實驗
3.3.3 實驗結果總結
3.4 新聚類算法係統功能
3.4.1 菜單欄介紹
3.4.2 屬性相關性檢驗窗口
3.4.3 數據標準化窗口
3.4.4 聚類窗口
3.4.5 模式評估窗口
3.5 新聚類算法聚類過程解析
3.5.1 數據選擇
3.5.2 數據預處理
3.5.3 數據變換
3.5.4 數據挖掘
3.5.5 結果解釋

4 關聯分析與係統功能
4.1 關聯分析簡介
4.2 Clementine關聯簡介
4.3 新關聯規則算法研究
4.3.1 新關聯規則算法的提齣
4.3.2 新關聯規則算法的相關定義
4.4 新關聯規則算法設計
4.5 新關聯規則係統功能
4.6 新關聯規則挖掘過程解析
4.6.1 數據選擇
4.6.2 數據預處理
4.6.3 數據變換
4.6.4 數據挖掘
4.6.5 數據解釋

5 現代化管理中的聚類應用
5.1 紙質調查問捲數據聚類分析
5.1.1 紙質問捲的設計與數據整理
5.1.2 數據預處理
5.1.3 學科資料需求聚類分析
5.1.4 館藏基本需求聚類分析
5.1.5 讀者藉閱行為聚類分析
5.1.6 圖書館服務滿意度聚類分析
5.1.7 決策建議
5.2 網絡調查數據聚類分析
5.2.1 網絡數據收集與數據整理
5.2.2 數據預處理
5.2.3 商校圖書館人力資源聚類分析
5.2.4 葛校圖書館資源聚類分析
5.2.5 決策建議

6 現代化管理中的關聯應用
6.1 通用圖書館集成係統簡介
6.2 藉閱流通日誌中讀者屬性與圖書類彆的關聯分析
6.2.1 數據收集與數據整理
6.2.2 數據預處理
6.2.3 關聯規則挖掘
6.2.4 挖掘結果分析
6.2.5 決策建議
6.3 藉閱流通日誌中圖書與圖書問的關聯分析
6.3.1 數據收集與數據整理
6.3.2 數據預處理
6.3.3 關聯規則挖掘
6.3.4 挖掘結果分析
6.3.5 決策建議
6.4 讀者藉閱記錄中圖書大類間的DAR關聯分析
6.4.1 數據收集與數據整理
6.4.2 數據預處理
6.4.3 關聯規則挖掘
6.4.4 挖掘結果分析
6.4.5 決策建議
6.5 紙質問捲學科間的DAR關聯分析
6.5.1 數據收集與數據整理
6.5.2 數據預處理
6.5.3 關聯規則挖掘
6.5.4 挖掘結果分析
6.5.5 決策建議

7 結論、建議、展望
7.1 圖書館數據挖掘的決策過程
7.2 新算法達到的功能
7.3 圖書館數據的搜集整理工作
7.4 挖掘結果的分析與建議
7.4.1 調查問捲數據的聚類分析與建議
7.4.2 網絡數據的聚類分析與建議
7.4.3 圖書館集成係統數據的Clementine關聯分析與建議
7.4.4 圖書館集成係統數據的DAR關聯分析與建議
7.4.5 調查問捲館藏資料數據的DAR關聯分析與建議
7.5 展望
附錄
附錄A 圖書館資源建設、利用與服務情況問捲調查
附錄B 高校圖書館信息調查錶
附錄C 圖書藉閱次數統計錶
附錄D 讀者藉閱次數統計錶
參考文獻


【XH】 數據挖掘與管理實踐 下載 mobi epub pdf txt 電子書
【XH】 數據挖掘與管理實踐 pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

類似圖書 點擊查看全場最低價

【XH】 數據挖掘與管理實踐 pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有