《經麯原版書庫·數據挖掘:概念與技術(英文版·第3版)》特點:引入瞭許多算法和實現示例,全部以易於理解的僞代碼編寫,適用於實際的大規模數據挖掘項目。討論瞭一些高級主題,例如挖掘麵嚮對象的關係型數據庫、空間數據庫、多媒體數據庫、時間序列數據庫、文本數據庫、萬維網以及其他領域的應用等。全麵而實用地給齣用於從海量數據中獲取盡可能多信息的概念和技術。
Foreword to Second Edition
Preface
Acknowledgments
About the Authors
Chapter1 Introduction
Why Data Mining?
Moving toward the Information Age
Data Mining as the Evolution of Information Technology
What Is Data Mining?
What Kinds of Data Can Be Mined?
Database Data
Data Warehouses
Transactional Data
Other Kinds of Data
What Kinds of Patterns Can Be Mined?
Class/Concept Description: Characterization and Discrimination
Mining Frequent Patterns, Associations, and Correlations
Classification and Regression for Predictive Analysis
Cluster Analysis
Outlier Analysis
Are All Patterns Interesting?
Which Technologies Are Used?
Statistics
Machine Learning
Database Systems and Data Warehouses
Information Retrieval
Which Kinds of Applications Are Targeted?
Business Intelligence
Web Search Engines
Major Issues in Data Mining
Mining Methodology
User Interaction
Efificiency and Scalability
Diversity of Database Types
Data Mining and Society
Summary
Exercises
Bibliographic Notes
Chapter 2 Getting to Know Your Data
Data Objects and Attribute Types
What Is an Attribute?
Nominal Attributes
Binary Attributes
Ordinal Attributes
Numeric Attributes
Discrete versus Continuous Attributes
Basic Statistical Descriptions of Data
Measuring the Central Tendency: Mean, Median, and Mode
Measuring the Dispersion of Data: Range, Quartiles, Variance,
Standard Deviation, and Interquartile Range
Graphic Displays of Basic Statistical Descriptions of Data
Data Visualization
PixeI-Oriented Visualization Techniques
Geometric Projection Visualization Techniques
Icon-Based Visualization Techniques
Hierarchical Visualization Techniques
Visualizing Complex Data and Relations
Measuring Data Similarity and Dissimilarity
Data Matrix versus Dissimilarity Matrix
Proximity Measures for Nominal Attributes
Proximity Measures for Binary Attributes
Dissimilarity of Numeric Data: Minkowski Distance
Proximity Measures for Ordinal Attributes
Dissimilarity for Attributes of Mixed Types
Cosine Similarity
Summary
Exercises
Bibliographic Notes
……
Chapter 3 Data Preprocessing
Chapter 4 Data Warehousing and Online Analytical Processin
Chapter 5 Data Cube Technology
Chapter 6 Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods
Chapter 7 Advanced Pattern Mining
Chapter 8 Classification: Basic Concepts
Chapter 9 Classification: Advanced Methods
Chapter 10 Cluster Analysis: Basic Concepts and I~ethods
Chapter 11 Advanced Cluster Analysis
Chapter 12 Outlier Detection
Chapter 13 Data Mining Trends and Research Frontiers
Bibliography
Index
東西很好,書是好書。。。。
评分 评分價格比較便宜也很實用。
评分老公買的,還不錯
评分認識作者,是個好的老師,這本書也是數據挖掘方嚮的必讀書
评分經典書籍給好評!!!!
评分書的內容符閤我的要求,內容描述準確。
评分書很不錯,很有用,購買方便
评分圖書不錯 值得一讀 物美價廉
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有