內容簡介
The subject of real analytic functions is one of the oldest in mathematical analysis. Today it is encountered early in one's mathematical training: the first taste usually comes rn calculus. While most working mathematicians use real analytic functions from time to time in their WOfk, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's thcorem is in Lefschetz's quute old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no compre hensive discussion in print of the embedding problem for real analytic manifolds.
We have had occasion in our collaborative research to become acquainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real analytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly. Finally there are some truly deep and difficult topics: embedding of real analytic manifolds, sub and semi-analytic sets, the structure theorem for real analytic varieties, and resolution of singularities are disc,ussed and described. But thorough proofs in these areas could not possibly be provided in a volume of modest length.
內頁插圖
目錄
Prethce to the Second Edition
Preface to the First Edition
1 Elementary Propertles
1.1 Basic Properties of Power Series
1.2 Analytic Continuation
1.3 The Formula of Faa di Bruno
1.4 Composition of ReaI Analytic Functions
1.5 Inverse Functions .
2 Multivariable Calculus of ReaI Analytic Functions
2.1 Power Series in Several Variables
2.2 ReaI Analytic Functions of SeveraI Variables
2.3 Thelmplicit Function Theorem
2.4A Special Case of the Cauchy-Kowalewsky Theorem
2.5 The lnverse Function Theorem
2.6Topologies on the Space of Real Analytic Functions
2.7 ReaI Analytic Submarufolds
2.7.1Bundles over a Real Analytic Submanifold
2.8 The GeneraI Cauchy-Kowalewsky Theorem
3 ClassicaI Toplcs
3.0 Introductory Remarks
3.1 TheTheorem ofPringsheim and Boas
3.2 Besicovitch'sTheorem
3.3 Whitney's Extension and Approximation Theorems
3.4 TheTheorem ofS.Bernstein
4Some Questions of Hard Analysis
4.1 Quasi-analytic and Gevrey Classes
4.2 PuiseuxSeries
4.3 Separate Real Analyticity
5 Results Motivated by Partial DifferentiaI Equations
5.1 Division of Distributionsl
5.1.1Projection of Polynomially Defined Sets
5.2 DMsion of Distributionsll
5.3 The FBI Transform
5.4 The Paley-Wiener Theorem
6 Topics in Geometry
6.1 The Weierstrass Preparation Theorem
6.2 Resolution of Singularities
6.3 Lojasiewicz's Structure Theorem for Real Analytic Varieties
6.4 The Embedding of Real Analytic Manifolds
6.5 Semianalytic and Subanalytic Sets
6.5.1 Basic Definitions
6.5.2 Facts Concerning Semianalytic and Subanalytic Sets
6.5.3 Examples and Discussion
6.5.4 Rectilinearization
Blbliography
Index
前言/序言
經典數學名著導讀:深入解析數論與代數幾何的璀璨星河 本書旨在為對純粹數學,特彆是數論(Number Theory)與代數幾何(Algebraic Geometry)領域抱有濃厚興趣的讀者,提供一份全麵而深入的導引。我們聚焦於構建堅實的理論基礎,探索這些交叉學科的前沿課題,旨在使讀者能夠獨立閱讀最新的研究文獻。本書的編寫風格力求嚴謹、清晰,並在適當之處穿插曆史背景與應用實例,以激發讀者的求知欲。 第一部分:現代數論的基石與拓展 本部分緻力於係統地梳理解析數論(Analytic Number Theory)的核心工具,並將其應用於解決古典數論中的難題。 第一章:黎曼$zeta$函數與素數分布 我們將從黎曼(Bernhard Riemann)對素數分布的革命性洞察開始。詳細介紹黎曼$zeta$函數的解析性質,包括其歐拉乘積錶示、伽馬函數的關聯,以及通過解析延拓獲得的函數方程。重點攻剋素數定理(Prime Number Theorem)的嚴格證明,對比使用初等方法(如Selberg積分)與復變函數方法(利用零點的分布)的優劣。此外,深入探討切比雪夫函數 $psi(x)$,並分析$zeta(s)$零點與素數序列隨機性之間的深層聯係。本書將詳細闡述零點密律(Zero-Density Estimates)在提高素數計數誤差界限中的關鍵作用。 第二章:狄利剋雷L-函數與二次互反律 本章將視角轉嚮更廣闊的數域。首先,引入狄利剋雷特徵(Dirichlet Characters)的概念及其性質,在此基礎上構造狄利剋雷L-函數。我們將詳細論證L-函數的實奇點定理(Real Zero-Free Regions),這是證明狄利剋雷關於素數在等差數列中分布定理(Dirichlet's Theorem on Arithmetic Progressions)的必要步驟。隨後,我們將專題討論二次互反律(Quadratic Reciprocity Law)的多種證明路徑,包括高斯(Gauss)的經典幾何論證,以及通過模算術(Modular Arithmetic)和有限域進行的現代代數證明。對雅可比符號(Jacobi Symbol)的性質及其與二次剩餘(Quadratic Residues)的聯係將進行詳盡的分析。 第三章:代數數論導論 本部分是連接分析與代數的橋梁。我們首次引入代數數(Algebraic Numbers)和數域(Number Fields)的概念。詳細介紹環論(Ring Theory)的基本概念在數論中的應用,如唯一因子分解域(UFD)和主理想域(PID)的辨識。核心內容聚焦於代數整數(Algebraic Integers)的定義、範數(Norm)和跡(Trace)的計算。通過研究分式理想(Fractional Ideals),我們闡明瞭為何在一般數域中因子分解不再唯一,並由此導齣類群(Class Group)和類數(Class Number)的概念。書中的例子將著重於二次域 $mathbb{Q}(sqrt{d})$,計算其整數環和單位群結構。 第二部分:代數幾何的基礎結構與範疇論視角 本部分將讀者從經典的代數數論推嚮現代代數幾何的語言——方案論(Scheme Theory)。 第四章:交換代數迴顧與預備知識 為瞭理解代數幾何的抽象結構,本章首先進行嚴格的交換代數迴顧。涵蓋交換環(Commutative Rings)、理想(Ideals)、素理想(Prime Ideals)和局部化(Localization)的詳細討論。重點是諾特環(Noetherian Rings)的性質及其在代數簇中的幾何意義。引入張量積(Tensor Product)的構造及其在理解模與嚮量空間構造上的重要性。本書特彆強調同調代數(Homological Algebra)的初步概念,特彆是射影(Projective)和內射(Injective)分辨率在後續章節中的預備作用。 第五章:預層、層與概形 本章是進入現代代數幾何的門檻。首先,通過預層(Presheaves)的概念,解釋如何“在局部收集信息”。隨後,嚴格定義層(Sheaves),解釋粘閤性(Gluing)的數學要求。通過具體的例子,如拓撲空間上的連續函數層,使讀者直觀理解層的概念。在此基礎上,引入概形(Schemes)的定義——通過將環譜化(Spectrum of a Ring)與層結構結閤。讀者將學習如何從環的結構中構建齣幾何對象,理解$operatorname{Spec}(R)$的拓撲性質(如Zariski拓撲)。 第六章:態射與嚮量叢 一旦掌握瞭概形的語言,本章便著手研究概形之間的關係——態射(Morphisms)。詳細分析從一個概形到另一個概形的態射的定義,包括結構層的拉迴(Pullback)。核心內容聚焦於局部自由層(Locally Free Sheaves),並將其視為概形上的推廣的嚮量場或函數空間。本書將通過張量化(Tensorization)操作,展示如何提升態射的性質。專題討論偶次上同調(Even Cohomology)的基礎概念,特彆是其在代數拓撲與代數幾何中的交匯點,為讀者理解更高級的Sheaf Cohomology奠定基礎。 第七章:麯綫、奇點與幾何完備性 本章將理論應用於最直觀的幾何對象:代數麯綫(Algebraic Curves)。我們將利用前述工具分析光滑麯綫(Smooth Curves)的性質,並深入探討奇點(Singularities)。通過局部環的分析,讀者將學會如何區分尖點(Cusp)和自交點(Node)。最後,本部分將引入黎曼-羅赫定理(Riemann-Roch Theorem)的代數幾何版本,展示該定理在分類代數麯綫時的強大威力,並簡要提及該定理在L-函數函數方程證明中的深刻聯係。 本書的最終目標是培養讀者利用現代數學語言處理古典問題的能力,並在解析方法與代數結構之間架起堅實的橋梁。