實用綫性代數(圖解版)

實用綫性代數(圖解版) pdf epub mobi txt 电子书 下载 2025

[美] Gerald Farin,[美] Dianne Hansford 著,李紅玲 譯
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 机械工业出版社
ISBN:9787111473343
版次:1
商品编码:11563092
品牌:机工出版
包装:平装
丛书名: 国外优秀数学教材系列
开本:16开
出版时间:2014-10-01
用纸:胶版纸
页数:440

具体描述

編輯推薦

適讀人群 :大學生、大學教師

  《實用綫性代數(圖解版)》為英文原文中文注釋版本,由一綫教學任課老師在書中難點部分作齣注釋講解。從幾何直觀的視角來審視綫性代數的內容。

內容簡介

本書區彆於以往綫性代數的書籍,內容新穎,編排獨特,作者以幾何視角講述綫性代數,通過二維平麵和三維空間中的例子解釋綫性代數中的各種概念和性質。本書強調直觀性以及知識點的背景,結閤計算機中各種圖形的變換來理解綫性變換,注重可讀性的同時突齣數學的基本思想,將直觀圖形與數學證明進行瞭巧妙的結閤。作者在書籍側邊空白處手繪200餘幅示意圖給齣瞭相關概念的解釋,更好的幫助讀者理解。本書可供非數學類專業的學生及數學愛好者使用,亦可作為數學專業學生和教師的參考用書。

作者簡介

  傑拉德·法林(Gerald Farin),1979年於布倫瑞剋大學獲博士學位,著有"Curves and Surfaces for CAGD" (5th ed.), "NURBS" (2nd ed.)。同時他還兼任《計算機圖形設計》主編。

內頁插圖

精彩書評

  ★“這是一本鼓舞人心的書,書中涵蓋瞭綫性代數的所有內容,其中包含很多耐人尋味的例子,對於純數學傢瞭解更多關於綫性代數的應用也很有意義”
  ——American Mathematical Society(AMS)

目錄

笛卡兒的發現 1 第1章
1.1 二維平麵中局部坐標與整體坐標的互化 2
1.2 整體坐標到局部坐標的轉化 6
1.3 三維空間中局部坐標與整體坐標的互化 8
1.4 單位框外一點坐標的轉化 9
1.5 建立坐標係 10
1.6 習題 12

無處不在:二維平麵中的點與嚮量 13 第2章
2.1 點與嚮量的坐標及運算 14
2.2 點與嚮量的區彆 16
2.3 嚮量場 17
2.4 嚮量的長度 18
2.5 點的組閤 21
2.6 綫性無關 24
2.7 標量積 24
2.8 正交投影 28
2.9 不等式 29
2.10 習題 30

排列起來:二維平麵上的直綫 33 第3章
3.1 直綫的定義 34
3.2 直綫的參數方程 35
3.3 直綫的隱式方程 37
3.4 直綫的顯式方程 40
3.5 參數方程與隱式方程的互化 41
3.6 點到直綫的距離 43
3.7 點在直綫上的投影 47
3.8 相遇的地方:直綫相交的計算 48
3.9 習題 54

改變形狀:二維平麵上的綫性映射 57 第4章
4.1 傾斜的目標框 58
4.2 矩陣形式 59
4.3 矩陣的計算性質 61
4.4 圖形放縮 63
4.5 圖形反射 65
4.6 圖形鏇轉 68
4.7 圖形切變 69
4.8 圖形投影 71
4.9 投影的核 73
4.10 麵積與綫性映射:行列式 74
4.11 綫性映射的復閤 77
4.12 矩陣乘法的更多性質 81
4.13 矩陣運算的更多性質 83
4.14 習題 84

2×2綫性方程組 87 第5章
5.1 再議傾斜的目標框 88
5.2 矩陣形式 89
5.3 直接求解法:剋拉默法則 90
5.4 高斯消元法 91
5.5 取消映射:逆矩陣 93
5.6 無解方程組 99
5.7 欠定方程組 100
5.8 齊次方程組 100
5.9 數值應用:主元法 102
5.10 用矩陣定義映射 104
5.11 習題 104

在周圍移動:二維平麵上的仿射映射 107 第6章
6.1 坐標變換 108
6.2 仿射映射與綫性映射 110
6.3 平移 111
6.4 更多常見的仿射映射 112
6.5 從三角形映射到三角形 114
6.6 仿射映射的復閤 116
6.7 習題 120

特徵 123 第7章
7.1 固定方嚮 124
7.2 特徵值 125
7.3 特徵嚮量 127
7.4 特殊情形 129
7.5 對稱矩陣的幾何圖形 132
7.6 重復映射 135
7.7 映射的條件數 137
7.8 習題 138

剖分:三角 141 第8章
8.1 重心坐標 142
8.2 仿射不變性 144
8.3 幾個特殊點 145
8.4 二維平麵上的三角剖分 148
8.5 數據結構 149
8.6 點的位置 150
8.7 三維空間中的三角剖分 151
8.8 習題 153

圓錐麯綫 155 第9章
9.1 常見的圓錐麯綫 156
9.2 圓錐麯綫類型的判定 160
9.3 圓錐麯綫位置的判定 162
9.4 習題 163

三維空間中的幾何 165 第10章
10.1 從二維到三維 166
10.2 嚮量積 168
10.3 直綫 172
10.4 平麵 173
10.5 應用:光與影 177
10.6 標量三重積 180
10.7 綫性空間 181
10.8 習題 183

三維空間中的相交 185 第11章
11.1 點與平麵的距離 186
11.2 兩直綫間的距離 187
11.3 直綫與平麵相交 189
11.4 直綫與三角形相交 191
11.5 光在平麵上的反射 191
11.6 三個平麵相交 193
11.7 兩個平麵相交 194
11.8 建立正交坐標係 195
11.9 習題 197

三維空間中的綫性映射 199 第12章
12.1 矩陣與綫性映射 200
12.2 圖形放縮 202
12.3 圖形反射 204
12.4 圖形切變 204
12.5 圖形投影 207
12.6 圖形鏇轉 209
12.7 體積與綫性映射:行列式 213
12.8 綫性映射的組閤 216
12.9 更多的矩陣性質 218
12.10 逆矩陣 219
12.11 習題 221

三維空間中的仿射映射 223 第13章
13.1 仿射映射 224
13.2 平移 225
13.3 四麵體的映射 225
13.4 投影 229
13.5 齊次坐標與透視映射 232
13.6 習題 238

一般綫性方程組 241 第14章
14.1 問題的引入 242
14.2 高斯消元求解法 244
14.3 行列式 250
14.4 超定方程組 253
14.5 逆矩陣 256
14.6 矩陣的LU分解 258
14.7 習題 262

一般綫性空間 265 第15章
15.1 基本性質 266
15.2 綫性映射 268
15.3 內積 271
15.4 格拉姆-施密特正交化方法 271
15.5 高維特徵問題 272
15.6 空間一覽 274
15.7 習題 276

數值方法 279 第16章
16.1 綫性方程組的另一種解法:豪斯霍爾德法 280
16.2 嚮量的範數與序列 285
16.3 方程組的迭代解法:高斯-雅可比法與高斯-賽德爾法 287
16.4 求特徵值:冪法 290
16.5 習題 294

直綫組團來襲:摺綫和多邊形 297 第17章
17.1 摺綫 298
17.2 多邊形 299
17.3 凸性 300
17.4 多邊形的類彆 301
17.5 不常見的多邊形 302
17.6 轉嚮角與分支數 304
17.7 麵積 305
17.8 驗證共麵問題 309
17.9 驗證點與多邊形的位置問題 310
17.10 習題 313

麯綫 315 第18章
18.1 應用:參數麯綫 316
18.2 貝齊爾麯綫的性質 321
18.3 矩陣形式 323
18.4 導數 324
18.5 閤成麯綫 326
18.6 平麵麯綫的幾何 327
18.7 沿麯綫移動 329
18.8 習題 331
後記教程 333 附錄A
A.1 來個例子熱身一下 333
A.2 復習 336
A.3 仿射映射 338
A.4 變量 339
A.5 環 340
A.6 CTM 341
部分解答 343 附錄 B
詞匯錶 367
參考文獻 371
索引 373
Contents

Preface
Descartes’ Discovery 1 Chapter 1
1.1 Local and Global Coordinates: 2D 2
1.2 Going from Global to Local 6
1.3 Local and Global Coordinates: 3D 8
1.4 Stepping Outside the Box 9
1.5 Creating Coordinates 10
1.6 Exercises 12

Here and There: Points and Vectors in 2D 13 Chapter 2
2.1 Points and Vectors 14
2.2 What’s the Difference 16
2.3 Vector Fields 17
2.4 Length of a Vector 18
2.5 Combining Points 21
2.6 Independence 24
2.7 Dot Product 24
2.8 Orthogonal Projections 28
2.9 Inequalities 29
2.10 Exercises 30

Lining Up: 2D Lines 33 Chapter 3
3.1 Defining a Line 34
3.2 Parametric Equation of a Line 35
3.3 Implicit Equation of a Line 37
3.4 Explicit Equation of a Line 40
3.5 Converting Between Parametric and Implicit Equations 41
3.6 Distance of a Point to a Line 43
3.7 The Foot of a Point 47
3.8 A Meeting Place: Computing Intersections 48
3.9 Exercises 54

Changing Shapes: Linear Maps in 2D 57 Chapter 4
4.1 Skew Target Boxes 58
4.2 The Matrix Form 59
4.3 More about Matrices 61
4.4 Scalings 63
4.5 Reflections 65
4.6 Rotations 68
4.7 Shears 69
4.8 Projections 71
4.9 The Kernel of a Projection 73
4.10 Areas and Linear Maps: Determinants 74
4.11 Composing Linear Maps 77
4.12 More on Matrix Multiplication 81
4.13 Working with Matrices 83
4.14 Exercises 84

2×2 Linear Systems 87 Chapter 5
5.1 Skew Target Boxes Revisited 88
5.2 The Matrix Form 89
5.3 A Direct Approach: Cramer’s Rule 90
5.4 Gauss Elimination 91
5.5 Undoing Maps: Inverse Matrices 93
5.6 Unsolvable Systems 99
5.7 Underdetermined Systems 100
5.8 Homogeneous Systems 100
5.9 Numerical Strategies: Pivoting 102
5.10 Defining a Map 103
5.11 Exercises 104

Moving Things Around: Affine Maps in 2D 107 Chapter 6
6.1 Coordinate Transformations 108
6.2 Affine and Linear Maps 110
6.3 Translations 111
6.4 More General Affine Maps 112
6.5 Mapping Triangles to Triangles 114
6.6 Composing Affine Maps 116
6.7 Exercises 120

Eigen Things 123 Chapter 7
7.1 Fixed Directions 124
7.2 Eigenvalues 125
7.3 Eigenvectors 127
7.4 Special Cases 129
7.5 The Geometry of Symmetric Matrices 132
7.6 Repeating Maps 135
7.7 The Condition of a Map 137
7.8 Exercises 138

Breaking It Up: Triangles 141 Chapter 8
8.1 Barycentric Coordinates 142
8.2 Affine Invariance 144
8.3 Some Special Points 145
8.4 2D Triangulations 148
8.5 A Data Structure 149
8.6 Point Location 150
8.7 3D Triangulations 151
8.8 Exercises 153

Conics 155 Chapter 9
9.1 The General Conic 156
9.2 Analyzing Conics 160
9.3 The Position of a Conic 162
9.4 Exercises 163

3D Geometry 165 Chapter 10
10.1 From 2D to 3D 166
10.2 Cross Product 168
10.3 Lines 172
10.4 Planes 173
10.5 Application: Lighting and Shading 177
10.6 Scalar Triple Product 180
10.7 Linear Spaces 181
10.8 Exercises 183

Interactions in 3D 185 Chapter 11
11.1 Distance Between a Point and a Plane 186
11.2 Distance Between Two Lines 187
11.3 Lines and Planes: Intersections 189
11.4 Intersecting a Triangle and a Line 191
11.5 Lines and Planes: Reflections 191
11.6 Intersecting Three Planes 193
11.7 Intersecting Two Planes 194
11.8 Creating Orthonormal Coordinate Systems 195
11.9 Exercises 197

Linear Maps in 3D 199 Chapter 12
12.1 Matrices and Linear Maps 200
12.2 Scalings 202
12.3 Reflections 204
12.4 Shears 204
12.5 Projections 207
12.6 Rotations 209
12.7 Volumes and Linear Maps: Determinants 213
12.8 Combining Linear Maps 216
12.9 More on Matrices 218
12.10 Inverse Matrices 219
12.11 Exercises 221

Affine Maps in 3D 223 Chapter 13
13.1 Affine Maps 224
13.2 Translations 225
13.3 Mapping Tetrahedra 225
13.4 Projections 229
13.5 Homogeneous Coordinates and Perspective Maps 232
13.6 Exercises 238

General Linear Systems 241 Chapter 14
14.1 The Problem 242
14.2 The Solution via Gauss Elimination 244
14.3 Determinants 250
14.4 Overdetermined Systems 253
14.5 Inverse Matrices 256
14.6 LU Decomposition 258
14.7 Exercises 262

General Linear Spaces 265 Chapter 15
15.1 Basic Properties 266
15.2 Linear Maps 268
15.3 Inner Products 271
15.4 Gram-Schmidt Orthonormalization 271
15.5 Higher Dimensional Eigen Things 272
15.6 A Gallery of Spaces 274
15.7 Exercises 276

Numerical Methods 279 Chapter 16
16.1 Another Linear System Solver: The Householder Method 280
16.2 Vector Norms and Sequences 285
16.3 Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel 287
16.4 Finding Eigenvalues: the Power Method 290
16.5 Exercises 294

Putting Lines Together: Polylines and Polygons 297 Chapter 17
17.1 Polylines 298
17.2 Polygons 299
17.3 Convexity 300
17.4 Types of Polygons 301
17.5 Unusual Polygons 302
17.6 Turning Angles and Winding Numbers 304
17.7 Area 305
17.8 Planarity Test 309
17.9 Inside or Outside 310
17.10 Exercises 313

Curves 315 Chapter 18
18.1 Application: Parametric Curves 316
18.2 Properties of Bézier Curves 321
18.3 The Matrix Form 323
18.4 Derivatives 324
18.5 Composite Curves 326
18.6 The Geometry of Planar Curves 327
18.7 Moving along a Curve 329
18.8 Exercises 331
PostScript Tutorial 333 Appendix A
A.1 A Warm-Up Example 333
A.2 Overview 336
A.3 Affine Maps 338
A.4 Variables 339
A.5 Loops 340
A.6 CTM 341
Selected Problem Solutions 343 Appendix B
Glossary 367
Bibliography 371
Index 373

前言/序言

  對於工科與經濟類的大學生而言,“綫性代數”是一門公共基礎課,是必修的課程之一。常見的綫性代數教科書大緻有這樣幾個章節——行列式、綫性方程組、矩陣、嚮量空間、特徵值與特徵嚮量、二次型。打開教材,迎麵而來的就是計算與證明,鮮有知識點産生的緣由及其在實際生活中的應用。誠然,數學是一門抽象的科學,具有高度的概括性,但是這不代錶數學教材就應該這樣“斬頭去尾燒中段”,乾巴巴的毫無吸引力,冷冰冰地讓人生畏。數學教育研究者們一直在呼籲數學文化的滲透,那麼對於具體的一本教材而言,滲透什麼內容?如何進行滲透?滲透到什麼程度?我想,最基本的來說,至少要將知識的來龍去脈說個清楚。比如常見教科書開篇就是行列式的計算,那麼學生肯定想要知道“行列式的本質是什麼?為什麼要學行列式?它在實際應用中的作用是什麼?”在缺乏理解的基礎上,就算學會瞭計算與證明,對知識的把握也是稀裏糊塗的。這是件讓人遺憾的事情。
  本書,是一本彌補遺憾的書,是一本不同視角的書,是一本呈現知識點來龍去脈的書。本書按照先二維後三維的順序呈現知識,使得知識形象化,便於理解。全書共分18章,第1章到第9章是二維情形,以獨特的順序與適宜的方式介紹瞭綫性代數的基本知識點;第10章到第13章是三維情形,因此這四章是前九章的推廣,但並不重復,各有仙機;第14章到第18章是高維情形,呈現瞭許多實際生活中的應用,同時也有助於讀者抽象思維的發展。本書采用瞭非常規卻符閤認知的知識呈現順序,以直觀的、幾何的敘述方式呈現內容,以大量的實際例證呈現應用。如果你不曾學過綫性代數,閱讀本書,會讓你興趣盎然地沉浸其中,順理成章地掌握所有應掌握的知識點;如果你曾經學過綫性代數,閱讀本書,會讓你不斷地恍然大悟:“哦!原來這個知識點是這麼來的!原來這個知識點是這麼用的!原來這兩個知識點竟然有這層關係!”如果你想要看一本有趣且有用的綫性代數書籍,那麼本書就是一個不可錯過的上好選擇!





alt="" />


用户评价

评分

和其他线性代数不同,本身从几何的角度讨论线性代数的理论是应用。特别适合于计算机图形学领域的学者参考。

评分

《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书

评分

不一样的视角

评分

东西,不错,一贯给卖家好评

评分

很好的书

评分

  书中不仅讲述了数学问题和技巧,而且教导解决问题的方法,解说深入浅出,妙趣横生。大师们诙谐、细腻的笔触,描绘着数学工作中的欢乐和忧伤,那些或平淡、或深刻、或严肃、或幽默的涂鸦,更让我们在轻松愉悦的心境下体会数学的美妙。

评分

物流速度快,谢谢

评分

很好的专业书,可以多学习学习

评分

基础阅读好书,认真学习

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有