Python數據分析(影印版) [Python Data Analysis]

Python數據分析(影印版) [Python Data Analysis] pdf epub mobi txt 电子书 下载 2025

Ivan,Idris 著
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 东南大学出版社
ISBN:9787564160647
版次:1
商品编码:11830505
包装:平装
外文名称:Python Data Analysis
开本:16开
出版时间:2016-01-01
用纸:胶版纸
页数:329
字数:426000
正文语种:英文

具体描述

內容簡介

  Python是一種多範式的編程語言,既適閤麵嚮對象的應用開發,也適閤函數式設計模式。Python已然成為數據科學傢們在數據分析、可視化和機器學習方麵的**語言,它可以帶來高效率和高生産力。
  《Python數據分析(影印版 英文版)》將教會初學者如何發掘Python的*大潛力用於數據分析,包括從數據獲取、清洗、操作、可視化以及存儲到復分析和建模等一切相關主題。它聚焦於一係列開源Python模塊,比如NumPy、SciPy、matplotlib、pandas、I Python、Cython、scikit-learn以及NLTK等。在後麵的章節裏,《Python數據分析(影印版 英文版)》涵蓋瞭數據可視化、信號處理與時間序列分析、數據庫、可預測分析及機器學習等主題。

目錄

Preface
Chapter 1: Getting Started with Python Libraries
Software used in this book
Installing software and setup
On Windows
On Linux
On Mac OS X
Building NumPy SciPy, matplotlib, and IPython from source
Installing with setuptools
NumPy arrays
A simple application
Using IPython as a shell
Reading manual pages
IPython notebooks
Where to find help and references
Summary

Chapter 2: NumPy Arrays
The NumPy array object
The advantages of NumPy arrays
Creating a multidimensional array
Selecting NumPy array elements
NumPy numerical types
Data type objects
Character codes
The dtype constructors
The dtype attributes
One-dimensional slicing and indexing
Manipulating array shapes
Stacking arrays
Splitting NumPy arrays
NumPy array attributes
Converting arrays
Creating array views and copies
Fancy indexing
Indexing with a list of locations
Indexing NumPy arrays with Booleans
Broadcasting NumPy arrays
Summary

Chapter 3: Statistics and Linear Algebra
NumPy and SciPy modules
Basic descriptive statistics with NumPy
Linear algebra with NumPy
Inverting matrices with NumPy,
Solving linear systems with NumPy
Finding eigenvalues and eigenvectors with-NumPy
NumPy random numbers
Gambling with the binomial distribution
Sampling the normal distribution
Performing a normality test with SciPy
Creating a NumPy-masked array
Disregarding negative and extreme values
Summary

Chapter 4: pandas Primer
Installing and exploring pandas
pandas DataFrames
pandas Series
Querying data in pandas
Statistics with pandas DataFrames
Data aggregation with pandas DataFrames
Concatenating and appending DataFrames
Joining DataFrames
Handling missing values
Dealing with dates
Pivot tables
Remote data access
Summary

Chapter 5: Retrieving, Processing, and Storing Data
Writing CSV files withNumPy and pandas
Comparing the NumPy .npy binary format and pickling
pandas DataFrames
Storing data with PyTables
Reading and writing pandas DataFrames to HDF5 stores
Reading and writing to Excel with pandas
Using REST web services and JSON
Reading and writing JSON with pandas
Parsing RSS and Atom feeds
Parsing HTML with Beautiful Soup
Summary

Chapter 6: Data Visualization
matplotlib subpackages
Basic matplotlib plots
Logarithmic plots
Scatter plots
Legends and annotations
Three-dimensional plots
Plotting in pandas
Lag plots
Autocorrelation plots
Plot.ly
Summary

Chapter 7: Signal Processing and Time Series
statsmodels subpackages
Moving averages
Window functions
Defining cointegration
Autocorrelation
Autoregressive models
ARMA models
Generating periodic signals
Fourier analysis
Spectral analysis
Filtering
Summary

Chapter 8: Working with Databases
Lightweight access with sqlite3
Accessing databases from pandas
SQLAIchemy
Installing and setting up SQLAIchemy
Populating a database with SQLAIchemy
Querying the database with SQLAIchemy
Pony ORM
Dataset - databases for lazy people
PyMongo and MongoDB
Storing data in Redis
Apache Cassandra
Summary

Chapter 9: Analyzing Textual Data and Social Media
Installing NLTK
Filtering out stopwords, names, and numbers
The bag-of-words model
Analyzing word frequencies
Naive Bayes classification
Sentiment analysis
Creating word clouds
Social network analysis
Summary
Chapter 10: Predictive Analytics and Machine Learning
A tour of scikit-learn
Preprocessing
Classification with logistic regression
Classification with support vector machines
Regression with ElasticNetCV
Support vector regression
Clustering with affinity propagation
Mean Shift
Genetic algorithms
Neural networks
Decision trees
Summary

Chapter 11: Environments Outside the Python Ecosystem and Cloud Computing
Exchanging information with MATLAB/Octave
Installing rpy2
Interfacing with R
Sending NumPy arrays to Java
Integrating SWIG and NumPy
Integrating Boost and Python
Using Fortran code through f2py
Setting up Google App Engine
Running programs on PythonAnywhere
Working with Wakari
Summary

Chapter 12: Performance Tuning, Profiling, and Concurrency
Profiling the code
Installing Cython
Calling C code
Creating a process pool with multiprocessing
Speeding up embarrassingly parallel for loops with Joblib
Comparing Bottleneck to NumPy functions
Performing MapReduce with Jug
Installing MPI for Python
IPython Parallel
Summary

Appendix A: Key Concepts
Appendix B: Useful Functions
matplotlib
NumPy
pandas
Scikit-learn
SciPy
scipy.fftpack
scipy.signal
scipy.stats
Appendix C: Online Resources
Index

精彩書摘

  《Python數據分析(影印版)》:
  Installing and exploring pandas
  The minimal dependency set requirements for pandas is given as follows:
  NumPy: This is the fundament alnumerical array package that we installed and covered extensively in the preceding chapters
  python—dateuh I:Thisis a date—handlinglibrary
  pytz: This handles time zone definitions
  This list is the bare minimum; a longer list of optional dependencies can be locatedat http://pandas.pydata.org/pandas—docs/stable/install.html.We caninstall pandas via PyPI with pip or easy_install, using a binary installer, with theaid of our operating system package manager, or from the source by checking outthe code.The binary installers can be downloaded from http://pandas.pydata.org/getpandas.html.
  The command to install pandas with pip is as follows:
  pip install pandas
  You may have to prepend the preceding command with sudo if your user accountdoesn't have sufficient rights.For most, if not all, Linux distributions, the pandaspackage name is python—pandas.Please refer to the manual pages of your packagemanager for the correct command to install.These commands should be the same asthe ones summarized in Chapter 1, Getting Started with Python Libraries.To install fromthe source, we need to execute the following commands from the command line:
  $ git clone git://github.com/pydata/pandas.git
  $ cd pandas
  $ python setup.py install
  This procedure requires the correct setup of the compiler and other dependencies;therefore, it is recommended only if you really need the most up—to—date versionof pandas.Once we have installed pandas, we can explore it further by addingpandas—related lines to our documentation—scanning script pkg_check.
  ……

前言/序言


用户评价

评分

是我想要的

评分

准备学习一下Python数据分析的,感觉这本书的内容还是太肤浅了,基本点到即止。

评分

Babcock the same

评分

原来还是在2.0基础上写的,不高兴

评分

不错,正在学python!

评分

是我想要的

评分

英语的 呵呵了

评分

可能是由于本人在京东购买图书的时间每每总处于优惠活动高峰期(当然我相信绝大部分书友可能都是在这一时段下手的。。。呵呵呵),加上京东在新浪微博等处的网络宣传活动做得非常成功,也吸引了更多的购书、藏书的爱书之人,因此在收获包裹这一过程上我等待的有点久(具体原因是由于在订单中存在有部分商品需要从外地调货过来的情况——想想就觉得会很麻烦,但爱书的心切还是让我毅然决然。。。),我想可能各个城市的京东库房在活动期间一定是忙得不可开交,也完全能够理解,以及快递公司的派件员们的辛苦,十分感谢!大概上我等了有一个星期左右的时间,由于经常买书的缘故,位于我所居住的那个区域的派件小哥都认识我了,这不免让我有点小尴尬。小哥跟我说以后在网上买书可以多下些单,因为对于他们而言,每成功派送一个派件就可以多拿一块钱。当时我觉得心中很五味陈杂,这恐怕也是我一直选择在京东购物的一个小原因,不知道其他的快递公司是否也有这样的规定,所以我也尽量做到能够在满足我所需的购物优惠政策下尽可能的将订单分配到最多,并且也可以享受到更多的优惠福利。每次在小哥那里取件的时候都觉得蛮自豪的,嘿嘿。。。 下面讲一下商品本身的部分。 首先,京东发货的包裹质量向来都是较高的,我曾经也像很多人一样货比三家的在同类大型专业图书网购商城购买过,比较后发现京东的包装是相对认真负责的,订单商品较少时选择以双层塑料包装的形式,虽然没有像其他商家会使用较小型的瓦楞纸箱,但包装是做的相当用心的;商品较多时采用纸箱包装也一定花费了相当的工夫,充分体现了京东商城的服务品质。且包裹内的订单存根详细准确。 其次,由于我是一个十分爱惜书籍的人,对图书的质量也比较在乎,本着藏书的心态大过读书,我对商品本身的质量要求还是比较高的。具体到商品个体上,但凡是出版商提供外塑料包装膜的书籍几乎不存在破损毁坏的情况,因为在运送包裹的过程里难免不发生磕磕碰碰的情况,有时会有塑料膜开裂的现象,但书体本身是完好无损的,拆开后也没有发现有其他质量上的问题,新品成色很高。而凡是不提供外塑料包装膜的书籍质量依旧能保持很好的水平,这一点我觉得很难得,封面磨损少、几乎无划痕污渍破烂变形等情况;内页也少有折痕凹损的情况。每次拆包裹的时候那种满意欣喜的情绪真是不言而喻。

评分

不错不错不错不错不错不错不错

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有