包郵 Hadoop與大數據挖掘+Hadoop大數據分析與挖掘實戰 2本

包郵 Hadoop與大數據挖掘+Hadoop大數據分析與挖掘實戰 2本 pdf epub mobi txt 电子书 下载 2025

張良均 等 著 著
圖書標籤:
  • Hadoop
  • 大數據
  • 數據挖掘
  • 大數據分析
  • 實戰
  • Java
  • MapReduce
  • HDFS
  • Spark
  • Hive
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 蓝墨水图书专营店
出版社: 机械工业出版社
ISBN:9787111567875
商品编码:12800266015
开本:1
页数:1
字数:1

具体描述

YL6573  9787111567875 9787111522652


Hadoop與大數據挖掘

這是一本適閤教學和零基礎自學的Hadoop與大數據挖掘的教程,即便你完全沒有Hadoop編程基礎和大數據挖掘基礎,根據本書中的理論知識和上機實踐,也能迅速掌握如何使用Hadoop進行大數據挖掘。全書主要分為兩篇:基礎篇(1-7章),首先從宏觀上介紹瞭大數據相關概念和技術,然後逐一對Hadoop、Hive、HBase、Pig、Spark、Oozie等一係列大數據技術的概念、原理、架構,以及企業應用方法進行瞭詳細介紹,同時配有大量的案例。掌握瞭這些內容,就具備瞭大數據技術的基礎;挖掘實戰篇(第8章),主要是一個企業級大數據應用項目——電子商務智能推薦係統。通過分析應用背景、構建係統,使讀者瞭解針對係統的每一層應用使用什麼大數據技術來解決問題。涉及的流程有數據采集、數據預處理、模型構建等,在每一個流程中會進行大數據相關技術實踐,運用實際數據來進行分析,使讀者切身感受到利用大數據技術解決問題的魅力。


前言 
篇 基礎篇
第1章 淺談大數據2
1.1 大數據概述3
1.2 大數據平颱4
1.3 本章小結5
第2章 大數據存儲與運算利器—Hadoop6
2.1 Hadoop概述6
2.1.1 Hadoop簡介6
2.1.2 Hadoop存儲—HDFS8
2.1.3 Hadoop計算—MapReduce11
2.1.4 Hadoop資源管理—YARN13
2.1.5 Hadoop生態係統14
2.2 Hadoop配置及IDE配置17
2.2.1 準備工作17
2.2.2 環境配置18
2.2.3 集群啓動關閉與監控24
2.2.4 動手實踐:一鍵式Hadoop集群啓動關閉25
2.2.5 動手實踐:Hadoop IDE配置26
2.3 Hadoop集群命令28

2.3.1 HDFS常用命令hdfs dfs30
2.3.2 動手實踐:hdfs dfs命令實戰31
2.3.3 MapReduce常用命令mapred job32
2.3.4 YARN常用命令yarn jar32
2.3.5 動手實踐:運行MapReduce任務33
2.4 Hadoop編程開發33
2.4.1 HDFS Java API操作33
2.4.2 MapReduce原理35
2.4.3 動手實踐:編寫Word Count程序並打包運行44
2.4.4 MapReduce組件分析與編程實踐46
2.5 K-Means算法原理及HadoopMapReduce實現53
2.5.1 K-Means算法原理53
2.5.2 動手實踐:K-Means算法實現55
2.5.3 Hadoop K-Means算法實現思路55
2.5.4 Hadoop K-Means編程實現57
2.6 TF-IDF算法原理及HadoopMapReduce實現67
2.6.1 TF-IDF算法原理67
2.6.2 Hadoop TF-IDF編程思路67
2.6.3 Hadoop TF-IDF編程實現68
2.7 本章小結79
第3章 大數據查詢—Hive81
3.1 Hive概述81
3.1.1 Hive體係架構82
3.1.2 Hive數據類型86
3.1.3 Hive安裝87
3.1.4 動手實踐:Hive安裝配置91
3.1.5 動手實踐:HiveQL基礎—SQL91
3.2 HiveQL語句93
3.2.1 數據庫操作94
3.2.2 Hive錶定義94
3.2.3 數據導入100
3.2.4 數據導齣103
3.2.5 HiveQL查詢104
3.3 動手實踐:基於Hive的學生信息查詢108
3.4 基於Hive的航空公司客戶價值數據預處理及分析109
3.4.1 背景與挖掘目標109
3.4.2 分析方法與過程111
3.5 本章小結115
第4章 大數據快速讀寫—HBase116
4.1 HBase概述116
4.2 配置HBase集群118
4.2.1 Zookeeper簡介及配置118
4.2.2 配置HBase121
4.2.3 動手實踐:HBase安裝及運行122
4.2.4 動手實踐:ZooKeeper獲取HBase狀態122
4.3 HBase原理與架構組件123
4.3.1 HBase架構與組件123
4.3.2 HBase數據模型127
4.3.3 讀取/寫入HBase數據128
4.3.4 RowKey設計原則129
4.3.5 動手實踐:HBase數據模型驗證131
4.4 HBase Shell操作132
4.4.1 HBase常用Shell命令132
4.4.2 動手實踐:HBase Shell操作136
4.5 Java API &MapReduce;與HBase交互137
4.5.1 搭建HBase開發環境137
4.5.2 使用Java API操作HBase錶144
4.5.3 動手實踐:HBase Java API使用147
4.5.4 MapReduce與HBase交互147
4.5.5 動手實踐:HBase錶導入導齣150
4.6 基於HBase的冠字號查詢係統151
4.6.1 案例背景151
4.6.2 功能指標151
4.6.3 係統設計152
4.6.4 動手實踐:構建基於HBase的冠字號查詢係統162
4.7 本章小結175.........

Hadoop大數據分析與挖掘實戰


本書充滿瞭從多年投資與信貸業務中獲得的深刻的洞察,討論瞭廣泛的議題,包括:現金CDO違約相關性貸款與貸款擔保證券CDO權益級結構化産品CDO和擔保品概覽CDO套利新興市場和市值型CDO及閤成型CDO以及更多相關的議題CDO為那些能夠理解其復雜性的人們提供瞭激動人心的機會。藉助本書第2版的指導,讀者能夠理解並且利用這一變化的市場及其相關産品。 
前 言 
基 礎 篇 
第1章 數據挖掘基礎2
1.1 某知名連鎖餐飲企業的睏惑2
1.2 從餐飲服務到數據挖掘3
1.3 數據挖掘的基本任務4
1.4 數據挖掘建模過程4
1.4.1 定義挖掘目標4
1.4.2 數據取樣5
1.4.3 數據探索6
1.4.4 數據預處理12
1.4.5 挖掘建模14
1.4.6 模型評價14
1.5 餐飲服務中的大數據應用15
1.6 小結15
第2章 Hadoop基礎16
2.1 概述16
2.1.1 Hadoop簡介16
2.1.2 Hadoop生態係統17
2.2 安裝與配置19
2.3 Hadoop原理26
2.3.1 Hadoop HDFS原理26
2.3.2 Hadoop MapReduce原理27
2.3.3 Hadoop YARN原理28
2.4 動手實踐30
2.5 小結33
第3章 Hadoop生態係統:Hive34
3.1 概述34
3.1.1 Hive簡介34
3.1.2 Hive安裝與配置35
3.2 Hive原理38
3.2.1 Hive架構38
3.2.2 Hive的數據模型40
3.3 動手實踐41
3.4 小結45
第4章 Hadoop生態係統:HBase46
4.1 概述46
4.1.1 HBase簡介46
4.1.2 HBase安裝與配置47
4.2 HBase原理50
4.2.1 HBase架構50
4.2.2 HBase與RDBMS51
4.2.3 HBase訪問接口52
4.2.4 HBase數據模型53
4.3 動手實踐54
4.4 小結61
第5章 大數據挖掘建模平颱62
5.1 常用的大數據平颱62
5.2 TipDM-HB大數據挖掘建模平颱63
5.2.1 TipDM-HB大數據挖掘建模平颱的功能63
5.2.2 TipDM-HB大數據挖掘建模平颱操作流程及實例65
5.2.3 TipDM-HB大數據挖掘建模平颱的特點67
5.3 小結68
第6章 挖掘建模69
6.1 分類與預測69
6.1.1 實現過程69
6.1.2 常用的分類與預測算法70
6.1.3 決策樹71
6.1.4 Mahout中Random Forests算法的實現原理75
6.1.5 動手實踐79
6.2 聚類分析83
6.2.1 常用聚類分析算法83
6.2.2 K-Means聚類算法84
6.2.3 Mahout中K-Means算法的實現原理88
6.2.4 動手實踐90
6.3 關聯規則93
6.3.1 常用的關聯規則算法93
6.3.2 FP-Growth關聯規則算法94
6.3.3 Mahout中Parallel Frequent Pattern Mining算法的實現原理98
6.3.4 動手實踐100
6.4 協同過濾102
6.4.1 常用的協同過濾算法102
6.4.2 基於項目的協同過濾算法簡介102
6.4.3 Mahout中Itembased Collaborative Filtering算法的實現原理103
6.4.4 動手實踐106
6.5 小結109
實 戰 篇
第7章 法律谘詢數據分析與服務推薦112
7.1 背景與挖掘目標112
7.2 分析方法與過程114
7.2.1 數據抽取120
7.2.2 數據探索分析120
7.2.3 數據預處理125
7.2.4 模型構建130
7.3 上機實驗139
7.4 拓展思考140
7.5 小結145........

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有