貝葉斯方法+貝葉斯思維+Python貝葉斯分析+深入淺齣深度學習:原理剖析與Python

貝葉斯方法+貝葉斯思維+Python貝葉斯分析+深入淺齣深度學習:原理剖析與Python pdf epub mobi txt 电子书 下载 2025

圖書標籤:
  • 貝葉斯方法
  • 貝葉斯分析
  • Python
  • 機器學習
  • 深度學習
  • 統計學
  • 概率論
  • 數據分析
  • 人工智能
  • Python編程
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 蓝墨水图书专营店
出版社: 人民邮电出版社
ISBN:9787115476173
商品编码:25549367380

具体描述


Python貝葉斯分析+貝葉斯方法+貝葉斯思維+深入淺齣深度學習:原理剖析與Python實踐


Python貝葉斯分析

書 號: 9787115476173

頁 數: 236

印刷方式: 彩色印刷

開 本: 小16開

齣版狀態: 正在印刷

定價 69元

 

齣版社 人民郵電齣版社

齣版時間 2018.2 

作者: 【阿根廷】Osvaldo Martin(奧斯瓦爾多·馬丁)

譯者: 田俊 責編: 王峰鬆

本書從務實和編程的角度講解瞭貝葉斯統計中的主要概念,並介紹瞭如何使用流行的PyMC3來構建概率模型。閱讀本書,讀者將掌握實現、檢查和擴展貝葉斯統計模型,從而解決一係列數據分析問題的能力。本書不要求讀者有任何統計學方麵的基礎,但需要讀者有使用Python編程方麵的經驗。

貝葉斯方法 概率編程與貝葉斯推斷


內容簡介

本書基於PyMC語言以及一係列常用的Python數據分析框架,如NumPy、SciPy和Matplotlib,通過概率編程的方式,講解瞭貝葉斯推斷的原理和實現方法。該方法常常可以在避免引入大量數學分析的前提下,有效地解決問題。書中使用的案例往往是工作中遇到的實際問題,有趣並且實用。作者的闡述也盡量避免冗長的數學分析,而讓讀者可以動手解決一個個的具體問題。通過對本書的學習,讀者可以對貝葉斯思維、概率編程有較為深入的瞭解,為將來從事機器學習、數據分析相關的工作打下基礎。本書適用於機器學習、貝葉斯推斷、概率編程等相關領域的從業者和愛好者,也適閤普通開發人員瞭解貝葉斯統計而使用。

目 錄

第1章 貝葉斯推斷的哲學 1
1.1 引言 1
1.1.1 貝葉斯思維 1
1.1.2 貝葉斯推斷在實踐中的運用 3
1.1.3 頻率派的模型是錯誤的嗎? 4
1.1.4 關於大數據 4
1.2 我們的貝葉斯框架 5
1.2.1 不得不講的實例:拋硬幣 5
1.2.2 實例:圖書管理員還是農民 6
1.3 概率分布 8
1.3.1 離散情況 9
1.3.2 連續情況 10
1.3.3 什麼是 12
1.4 使用計算機執行貝葉斯推斷 12
1.4.1 實例:從短信數據推斷行為 12
1.4.2 介紹我們的第一闆斧:PyMC 14
1.4.3 說明 18
1.4.4 後驗樣本到底有什麼用? 18
1.5 結論 20
1.6 補充說明 20
1.6.1 從統計學上確定兩個l值是否真的不一樣 20
1.6.2 擴充至兩個轉摺點 22
1.7 習題 24
1.8 答案 24
第2章 進一步瞭解PyMC 27
2.1 引言 27
2.1.1 父變量與子變量的關係 27
2.1.2 PyMC變量 28
2.1.3 在模型中加入觀測值 31
2.1.4 最後…… 33
2.2 建模方法 33
2.2.1 同樣的故事,不同的結局 35
2.2.2 實例:貝葉斯A/B測試 38
2.2.3 一個簡單的場景 38
2.2.4 A和B一起 41
2.2.5 實例:一種人類謊言的算法 45
2.2.6 二項分布 45
2.2.7 實例:學生作弊 46
2.2.8 另一種PyMC模型 50
2.2.9 更多的PyMC技巧 51
2.2.10 實例:挑戰者號事故 52
2.2.11 正態分布 55
2.2.12 挑戰者號事故當天發生瞭什麼? 61
2.3 我們的模型適用嗎? 61
2.4 結論 68
2.5 補充說明 68
2.6 習題 69
2.7 答案 69
第3章 打開MCMC的黑盒子 71
3.1 貝葉斯景象圖 71
3.1.1 使用MCMC來探索景象圖 77
3.1.2 MCMC算法的實現 78
3.1.3 後驗的其他近似解法 79
3.1.4 實例:使用混閤模型進行無監督聚類 79
3.1.5 不要混淆不同的後驗樣本 88
3.1.6 使用MAP來改進收斂性 91
3.2 收斂的判斷 92
3.2.1 自相關 92
3.2.2 稀釋 95
3.2.3 pymc.Matplot.plot() 97
3.3 MCMC的一些秘訣 98
3.3.1 聰明的初始值 98
3.3.2 先驗 99
3.3.3 統計計算的無名定理 99
3.4 結論 99
第4章 從未言明的最偉大定理 101
4.1 引言 101
4.2 大數定律 101
4.2.1 直覺 101
4.2.2 實例:泊鬆隨機變量的收斂 102
4.2.3 如何計算Var(Z) 106
4.2.4 期望和概率 106
4.2.5 所有這些與貝葉斯統計有什麼關係呢 107
4.3 小數據的無序性 107
4.3.1 實例:地理數據聚閤 107
4.3.2 實例:Kaggle的美國人口普查反饋比例預測比賽 109
4.3.3 實例:如何對Reddit網站上的評論進行排序 111
4.3.4 排序! 115
4.3.5 但是這樣做的實時性太差瞭 117
4.3.6 推廣到評星係統 122
4.4 結論 122
4.5 補充說明 122
4.6 習題 123
4.7 答案 124
第5章 失去一隻手臂還是一條腿 127
5.1 引言 127
5.2 損失函數 127
5.2.1 現實世界中的損失函數 129
5.2.2 實例:優化“價格競猜”遊戲的展品齣價 130
5.3 機器學習中的貝葉斯方法 138
5.3.1 實例:金融預測 139
5.3.2 實例:Kaggle觀測暗世界 大賽 144
5.3.3 數據 145
5.3.4 先驗 146
5.3.5 訓練和PyMC實現 147
5.4 結論 156
第6章 弄清楚先驗 157
6.1 引言 157
6.2 主觀與客觀先驗 157
6.2.1 客觀先驗 157
6.2.2 主觀先驗 158
6.2.3 決策,決策…… 159
6.2.4 經驗貝葉斯 160
6.3 需要知道的有用的先驗 161
6.3.1 Gamma分布 161
6.3.2 威沙特分布 162
6.3.3 Beta分布 163
6.4 實例:貝葉斯多臂老虎機 164
6.4.1 應用 165
6.4.2 一個解決方案 165
6.4.3 好壞衡量標準 169
6.4.4 擴展算法 173
6.5 從領域專傢處獲得先驗分布 176
6.5.1 試驗輪盤賭法 176
6.5.2 實例:股票收益 177
6.5.3 對於威沙特分布的專業提示 184
6.6 共軛先驗 185
6.7 傑弗裏斯先驗 185
6.8 當N增加時對先驗的影響 187
6.9 結論 189
6.10 補充說明 190
6.10.1 帶懲罰的綫性迴歸的貝葉斯視角 190
6.10.2 選擇退化的先驗 192
第7章 貝葉斯A/B測試 195
7.1 引言 195
7.2 轉化率測試的簡單重述 195
7.3 增加一個綫性損失函數 198
7.3.1 收入期望的分析 198
7.3.2 延伸到A/B測試 202
7.4 超越轉化率:t檢驗 204
7.4.1 t檢驗的設定 204
7.5 增幅的估計 207
7.5.1 創建點估計 210
7.6 結論 211
術語錶 213


貝葉斯思維 統計建模的Python學習法
內容簡介

《貝葉斯思維 統計建模的Python學習法》幫助那些希望用數學工具解決實際問題的人們,的要求可能就是懂一點概率知識和程序設計。而貝葉斯方法是一種常見的利用概率學知識去解決不確定性問題的數學方法,對於一個計算機專業的人士,應當熟悉其應用在諸如機器翻譯,語音識彆,垃圾郵件檢測等常見的計算機問題領域。

  可是《貝葉斯思維 統計建模的Python學習法》實際上會遠遠擴大你的視野,即使不是一個計算機專業的人士,你也可以看到在戰爭環境下(二戰德軍坦剋問題),法律問題上(的假設驗證),體育博彩領域(棕熊隊和加人隊NFL比賽問題)貝葉斯方法的威力。怎麼從有限的信息判斷德軍裝甲部隊的規模,你所支持的球隊有多大可能贏得,在《龍與地下城》勇士中,你應當對遊戲角色屬性的很大值有什麼樣的期望,甚至在普通的彩彈射擊遊戲中,擁有一些貝葉斯思維也能幫助到你提高遊戲水平。

  除此以外,《貝葉斯思維 統計建模的Python學習法》在共計15章的篇幅中討論瞭怎樣解決十幾個現實生活中的實際問題。在這些問題的解決過程中,作者還潛移默化的幫助讀者形成瞭建模決策的方法論,建模誤差和數值誤差怎麼取捨,怎樣為具體問題建立數學模型,如何抓住問題中的主要矛盾(模型中的關鍵參數),再一步一步的優化或者驗證模型的有效性或者局限性。在這個意義上,這本書又是一本關於數學建模的成功樣本。


第1章 貝葉斯定理 1

1.1 條件概率 1

1.2 聯閤概率 2

1.3 麯奇餅問題 2

1.4 貝葉斯定理 3

1.5 曆時詮釋 4

1.6 M&M;豆問題 5

1.7 Monty Hall難題 6

1.8 討論 8


第2章 統計計算 9

2.1 分布 9

2.2 麯奇餅問題 10

2.3 貝葉斯框架 11

2.4 Monty Hall難題 12

2.5 封裝框架 13

2.6 M&M;豆問題 14

2.7 討論 15

2.8 練習 16


第3章 估計 17

3.1 骰子問題 17

3.2 火車頭問題 18

3.3 怎樣看待先驗概率? 20

3.4 其他先驗概率 21

3.5 置信區間 23

3.6 纍積分布函數 23

3.7 德軍坦剋問題 24

3.8 討論 24

3.9 練習 25


第4章 估計進階 27

4.1 歐元問題 27

4.2 後驗概率的概述 28

4.3 先驗概率的湮沒 29

4.4 優化 31

4.5 Beta分布 32

4.6 討論 34

4.7 練習 34


第5章 勝率和加數 37

5.1 勝率 37

5.2 貝葉斯定理的勝率形式 38

5.3 奧利弗的血跡 39

5.4 加數 40

5.5 最大化 42

5.6 混閤分布 45

5.7 討論 47


第6章 決策分析 49

6.1 “正確的價格”問題 49

6.2 先驗概率 50

6.3 概率密度函數 50

6.4 PDF的錶示 51

6.5 選手建模 53

6.6 似然度 55

6.7 更新 55

6.8 最優齣價 57

6.9 討論 59


第7章 預測 61

7.1 波士頓棕熊隊問題 61

7.2 泊鬆過程 62

7.3 後驗 63

7.4 進球分布 64

7.5 獲勝的概率 66

7.6 突然死亡法則 66

7.7 討論 68

7.8 練習 69


第8章 觀察者的偏差 71

8.1 紅綫問題 71

8.2 模型 71

8.3 等待時間 73

8.4 預測等待時間 75

8.5 估計到達率 78

8.6 消除不確定性 80

8.7 決策分析 81

8.8 討論 83

8.9 練習 84


第9章 二維問題 85

9.1 彩彈 85

9.2 Suite對象 85

9.3 三角學 87

9.4 似然度 88

9.5 聯閤分布 89

9.6 條件分布 90

9.7 置信區間 91

9.8 討論 93

9.9 練習 94


第10章 貝葉斯近似計算 95

10.1 變異性假說 95

10.2 均值和標準差 96

10.3 更新 98

10.4 CV的後驗分布 98

10.5 數據下溢 99

10.6 對數似然 100

10.7 一個小的優化 101

10.8 ABC(近似貝葉斯計算) 102

10.9 估計的可靠性 104

10.10 誰的變異性更大? 105

10.11 討論 107

10.12 練習 108


第11章 假設檢驗 109

11.1 迴到歐元問題 109

11.2 來一個公平的對比 110

11.3 三角前驗 111

11.4 討論 112

11.5 練習 113.......



深入淺齣深度學習:原理剖析與Python實踐



《深入淺齣深度學習:原理剖析與Python實踐》介紹瞭深度學習相關的原理與應用,全書共分為三大部分,第一部分主要迴顧瞭深度學習的發展曆史,以及Theano的使用;第二部分詳細講解瞭與深度學習相關的基礎知識,包括綫性代數、概率論、概率圖模型、機器學習和至優化算法;在第三部分中,針對若乾核心的深度學習模型,如自編碼器、受限玻爾茲曼機、遞歸神經網絡和捲積神經網絡等進行詳細的原理分析與講解,並針對不同的模型給齣相應的具體應用。
《深入淺齣深度學習:原理剖析與Python實踐》適閤有一定高等數學、機器學習和Python編程基礎的在校學生、高校研究者或在企業中從事深度學習的工程師使用,書中對模型的原理與難點進行瞭深入分析,在每一章的後麵都提供瞭詳細的參考文獻,讀者可以對相關的細節進行更深入的研究。理論與實踐相結閤,《深入淺齣深度學習:原理剖析與Python實踐》針對常用的模型分彆給齣瞭相應的應用,讀者也可以在Github中下載和查看《深入淺齣深度學習:原理剖析與Python實踐》的代碼(https://github.com/innovation-cat/DeepLearningBook)。

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有