中學奧數專題突破-9年級 無 9787305134418 南京大學齣版社

中學奧數專題突破-9年級 無 9787305134418 南京大學齣版社 pdf epub mobi txt 电子书 下载 2025

無 著
圖書標籤:
  • 奧數
  • 初中數學
  • 九年級
  • 競賽輔導
  • 專題突破
  • 南京大學齣版社
  • 數學競賽
  • 升學必備
  • 學習輔導
  • 培優訓練
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 闻知图书专营店
出版社: 南京大学出版社
ISBN:9787305134418
商品编码:29272199926
出版时间:2014-06-01

具体描述

書名中學奧數專題突破-9年級
定價22.00
ISBN9787305134418
齣版社南京大學齣版社
作者
編號1200941924
齣版日期2014-06-01
印刷日期2014-09-01
版次1
字數201.00韆字
頁數178

專題1方程組-1
專題2方程組-2
專題3整數解
專題4不定方程
專題5不定方程的應用
專題6不定方程組
專題7不定方程組的應用
綜閤測試-1


專題8扇形麵積
專題9正方形-1
專題10正方形-2
專題11三角形麵積
專題12麵積與函數
綜閤測試-2


專題13圓-1
專題14圓-2
專題15角平分綫
專題16內心
綜閤測試-3


專題17外心
專題18內切圓
專題19外接圓
專題20全等三角形
綜閤測試-4


專題21不等式
專題22不等式證明
專題23恒等式證明
專題24整除-
專題25整除-2
專題26質數
專題27同餘
專題28數論綜閤-
專題29數論綜閤-2
綜閤測試-5


專題30相交弦定理
專題37正弦定理
專題32四點共圓-㈠
專題33四點共圓-2
綜閤測試-6


專題34三點共綫
專題35平移
專題36鏇轉
專題37點對稱
專題38軸對稱
專題39切綫定理
專題40割綫定理
專題41動點
綜閤測試-7


專題42抽屜原理
專題43計數-1
專題44計數-2
專題45算兩次
綜閤測試-8


專題46邏輯推理
專題47存在性問題
專題48覆蓋
專題49概率
專題50操作題
綜閤測試-9


專題51染色問題
專題52賦值法
專題53極D原理
專題54反證法
專題55構造法
綜閤測試-10
參考答案

普通青少年

本書根據九年級奧數基本知識的特點與規律 從“基本知識”和“基本技能”齣發 對數學知識進行梳理整閤。包括火柴遊戲、植樹問題、麵積計算等九年級學生應當掌握的奧數內容。

中學奧數專題突破 - 九年級:深耕基礎,精煉思維,點燃數學潛能 九年級,是中學數學學習的關鍵一年,更是通往奧林匹剋數學殿堂的重要跳闆。這一階段的學生,數學基礎已逐步鞏固,開始接觸更具深度和挑戰性的概念與解題技巧。如何在此基礎上,進一步提升數學思維能力,為未來的學習打下堅實基礎,是所有傢長和同學們關注的焦點。《中學奧數專題突破 - 九年級》正是為此而生,它並非一本包羅萬象的百科全書,而是一部精心打磨的“專題突破”指南,旨在引導學生深入理解並熟練掌握九年級奧數的核心專題,培養其獨立分析問題、靈活運用數學工具解決復雜問題的能力。 本書以“專題突破”為核心理念,將九年級奧數的核心內容分解為若乾個既相對獨立又緊密聯係的專題。這些專題的選擇,緊密圍繞曆年中考及各類高水平數學競賽的要求,力求覆蓋最重要、最常考、最具代錶性的知識點和方法。編著者團隊深諳中學數學教學規律及奧數發展趨勢,在內容設計上,既注重理論的嚴謹性,又強調方法的實用性,力求讓每一個專題都成為學生思維提升的“磨刀石”。 一、 內容設計:專題為王,精細打磨 本書並非簡單地羅列知識點,而是將每個專題都作為一個獨立的研究對象,進行深入的挖掘和闡釋。其內容設計主要體現在以下幾個方麵: 專題的精選與劃分: 針對九年級數學的特點,本書精選瞭包括但不限於以下核心專題: 函數與方程的深化探究: 二次函數圖像與性質的綜閤應用,參數的取值範圍問題,以及函數圖像與幾何圖形的結閤,特彆是二次函數與一次函數、反比例函數聯動的復雜問題。方程與不等式的解法與應用,尤其注重一元二次方程根的判以及韋達定理在解決問題中的妙用。 幾何圖形的變換與證明: 相似三角形的判定與性質在各種復雜幾何圖形中的應用,特彆是與圓、四邊形結閤的綜閤題目。幾何變換(平移、對稱、鏇轉、相似)在構建圖形、證明性質中的策略。動點問題在幾何圖形中的動態分析與求解。 概率與統計的初步應用: 概率的計算,特彆是古典概型、獨立事件、互斥事件的概率計算,以及在實際問題中的應用。統計圖錶數據的分析與解讀,以及對數據的初步推斷。 圓的性質與定理的綜閤運用: 圓的切綫性質、弦的性質、圓周角定理、圓心角定理的深刻理解與應用,以及它們在證明題目中的靈活組閤。切綫長定理、垂徑定理等經典定理的變式應用。 特殊的平行四邊形與梯形: 菱形、矩形、正方形的判定與性質的熟練掌握,以及它們與三角形、圓的綜閤運用。梯形(特彆是等腰梯形)的性質及相關計算與證明。 代數式的化簡與求值: 整式、分式、根式的化簡,以及利用因式分解、配方法、換元法等技巧進行復雜代數式的求值。 不等式的性質與應用: 一元一次不等式組的解法與應用,以及基本不等式的初步應用。 每個專題的劃分並非生搬硬套課本章節,而是根據其在奧數中的重要性和關聯性進行邏輯梳理,力求形成一套清晰的學習脈絡。 由淺入深的講解: 每個專題的講解都遵循“由淺入深”的原則。首先,從最基礎的概念和基本定理齣發,用清晰易懂的語言進行闡釋,確保學生對核心知識有紮實的理解。接著,循序漸進地引入變式,展示不同條件下知識點的變化與應用。最後,深入到專題的核心難點,講解更高級的解題技巧和思維策略。 精選的例題與解析: 例題是專題突破的核心載體。本書精選的例題,具有典型性、代錶性和區分度,覆蓋瞭該專題的各種常見題型和經典難題。例題的解析,不僅給齣答案,更重要的是剖析解題思路,展示思維過程,指齣易錯點和關鍵點。解析的語言力求精準、簡潔、清晰,讓學生能夠理解“為什麼這麼做”,而不僅僅是“怎麼做”。 專題練習與能力提升: 在每個專題講解之後,都配有精心設計的練習題。練習題的難度與例題相呼應,並有所拓展。部分題目為模仿性練習,幫助學生鞏固所學;部分題目為拓展性練習,引導學生進行發散性思考。練習題的設置,旨在讓學生通過主動的練習,將學到的知識內化為自己的能力。 二、 思維訓練:解題方法與數學思想並重 本書不僅僅是知識點的堆砌,更是思維方法的訓練場。在解題方法的傳授上,本書注重以下幾個方麵: 建模思想的滲透: 許多奧數題目,尤其是應用題和幾何題,都可以通過數學建模來解決。本書在講解時,會引導學生如何將實際問題轉化為數學模型,如何運用代數、幾何等工具對模型進行分析和求解。例如,在函數專題中,會強調如何根據實際情境建立函數關係式,並分析函數的性質來解決問題。 數形結閤的應用: 數形結閤是解決中學數學問題的強大武器。本書在講解代數問題時,會積極引導學生利用函數的圖像、幾何圖形的性質來分析問題、尋找解題思路。例如,在不等式專題中,可以通過一次函數的圖像來直觀理解不等式組的解集。 分類討論的思想: 在麵對含有不確定因素或具有多種可能性的問題時,分類討論是不可或缺的解題策略。本書會在閤適的專題中,重點講解分類討論的原則、方法和注意事項,以及如何避免遺漏或重復。 轉化與化歸的策略: 將復雜的問題轉化為相對簡單的問題,是奧數解題的基本思想。本書會介紹各種轉化與化歸的技巧,如將幾何問題轉化為代數問題,將高次問題轉化為低次問題等。 特殊化思想的運用: 在麵對一些抽象或難以直接入手的題目時,嘗試用特殊的情形去驗證猜想或尋找規律,是一種有效的解題輔助手段。本書會在適當的時候,引導學生運用特殊化思想來啓發思路。 方程思想的拓展: 方程思想貫穿於中學數學的始終。本書會在二次方程、函數應用等專題中,重點強調如何靈活運用方程思想來設未知數、列方程、解方程,從而解決各種數學問題。 三、 目標讀者與使用建議 本書的目標讀者為初中九年級學生,特彆是那些對數學有濃厚興趣,希望在數學競賽中取得佳績,或者希望為高中階段的學習打下更堅實基礎的學生。 為瞭最大化本書的學習效果,建議學生: 1. 循序漸進,逐個擊破: 按照本書的專題順序,逐個進行學習和練習,不要急於求成。 2. 深入理解,而非死記硬背: 重點在於理解每個知識點和解題方法的原理,而不是簡單記憶公式和步驟。 3. 勤於思考,善於總結: 在解題過程中,多問“為什麼”,多思考不同的解題思路,並在練習後對所學內容進行歸納總結。 4. 勇於挑戰,不怕睏難: 奧數學習過程中會遇到睏難,要保持積極的心態,通過反復練習和請教,剋服難關。 5. 與課本結閤,相輔相成: 本書是對課本知識的深化和拓展,應與課本知識的學習同步進行,相互印證。 結語 《中學奧數專題突破 - 九年級》是一本緻力於點燃學生數學潛能的寶貴資源。它通過精細的專題設計、深刻的思維訓練和科學的學習方法指導,幫助學生在九年級這一關鍵時期,築牢數學基礎,提升思維品質,為迎接更高級彆的數學挑戰做好充分的準備。相信通過本書的引導,每一位有誌於數學的學生,都將能在奧數的海洋中,乘風破浪,收獲屬於自己的知識與智慧。

用户评价

评分

對於我們這種需要係統性提升的學生來說,章節之間的邏輯銜接是至關重要的。這本書在這方麵做得非常齣色,它遵循瞭從基礎概念到專題深化,再到綜閤應用這樣的一個自然遞進過程。比如,在學習完數列的初步概念後,緊接著的專題就非常巧妙地將數列與不等式、概率等其他知識點結閤起來,形成瞭一種知識模塊的“交叉訓練”。這種設計的好處在於,它避免瞭知識的碎片化,讓人能更全麵地掌握知識的內在聯係。我特彆欣賞它在每個章節末尾設置的“能力提升挑戰”部分,那些題目往往不是常規的模擬題難度,而是更偏嚮於競賽思維的考察,但又不至於高不可攀。它更像是一個“助推器”,幫助我們將學到的工具性知識,轉化為解決陌生問題的創造性能力。每次做完這些挑戰題,那種成就感是普通練習冊無法比擬的。

评分

這本書的封麵設計給我留下瞭深刻的第一印象,那種沉穩又不失活力的色彩搭配,立刻讓人感覺這不是一本枯燥的教輔讀物。拿到手裏,紙張的質感也相當不錯,翻閱時那種順滑的感覺,確實是高品質齣版物的標誌。我本來對奧數這種“勸退”科目有些抗拒,總覺得裏麵充斥著各種繞來彎繞去的證明和生僻的公式,但這本書的排版布局卻齣乎意料地清晰。它不是那種把所有知識點一股腦堆砌在一起的“大雜燴”,而是很有層次感地將各個專題進行瞭劃分。比如,幾何部分的圖示就處理得非常到位,立體感很強,不像有些書上的圖畫得像火柴人一樣,看著就讓人頭疼。還有那些例題的選取,看得齣來編輯團隊是花瞭不少心思的,它們緊扣九年級的核心考點,但又不會完全局限於死記硬背的套路。更多的是引導我們去思考背後的數學原理,那種“原來如此”的頓悟感,是學習數學最迷人的地方,這本書似乎很懂得如何激發這種體驗。

评分

總的來說,這本書給我的感覺是:它不是一本簡單的“刷題寶典”,而更像是一本麵嚮未來高階學習的“思維構建指南”。它沒有過多地去渲染奧數的神奇和難度,而是以一種非常務實和循序漸進的方式,教會你如何像一個數學傢那樣去觀察、去假設、去證明。對於那些真正有誌於在初中階段打下紮實數學基礎,並希望在未來的學習中遊刃有餘的學生來說,這本書提供的不僅僅是知識點,更是一種麵對復雜問題的態度和方法論。它教會我們,好的數學題目的價值不在於它有多難,而在於它能激發我們思考問題的深度和廣度。我已經開始期待其他年級的相關書籍瞭,希望這種高質量的編輯水準能夠一直保持下去。

评分

當我真正開始深入閱讀內容時,最讓我驚喜的是它對解題思路的剖析深度。很多奧數輔導書往往隻給齣一個“標準答案”式的解法,讓人看完之後還是模模糊糊,不明白為什麼作者會選擇這麼一條路徑。但這本教材則不同,它仿佛是一位經驗豐富的老教師,會耐心地在你旁邊,從不同的角度去探討解決同一個問題的可能性。比如,在處理某個與函數相關的極值問題時,它不僅展示瞭代數法,還穿插瞭函數圖像的直觀分析,甚至還提及瞭(雖然篇幅不長,但作為拓展已經很棒瞭)如果放到更高級的微積分視角下會如何理解。這種多維度的講解,極大地拓寬瞭我的視野,讓我意識到數學並非隻有一條“正道”。更重要的是,它對一些常見“陷阱”和“易錯點”的標記非常精準,那些小小的提示語,常常能在我即將犯錯的關鍵時刻把我拉迴來,讓人感覺這本書的作者對初中生的思維定勢有著非常透徹的瞭解。

评分

關於習題和反饋機製,我希望能更深入地聊聊。這本書的習題量控製得恰到好處,既保證瞭足夠的練習密度來鞏固新學的內容,又沒有到讓人做吐血的程度。更關鍵的是,配套的解析部分堪稱典範。解析不僅僅是步驟的羅列,而更像是一份“批注”——它會告訴你“為什麼這裏要使用換元法”,或者“這個關鍵的轉化是如何想到的”。這種對思維過程的解碼,對於自學尤其重要。我個人習慣在做完一組題目後,會立刻翻看解析來對照自己的思路。如果發現自己的思路雖然得到瞭正確答案,但在效率上不如書本推薦的思路,我也會及時進行反思和調整。這種即時的、高質量的反饋循環,極大地提高瞭我的學習效率,感覺像是有無數個“小老師”在旁邊隨時指導,時刻保持學習狀態的警醒。

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有