深入淺齣圖神經網絡:GNN原理解析

深入淺齣圖神經網絡:GNN原理解析 pdf epub mobi txt 电子书 下载 2025

劉忠雨
圖書標籤:
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
前言
第1章 图的概述 1
1.1 图的基本定义 1
1.1.1 图的基本类型 2
1.1.2 邻居和度 4
1.1.3 子图与路径 4
1.2 图的存储与遍历 5
1.2.1 邻接矩阵与关联矩阵 5
1.2.2 图的遍历 6
1.3 图数据的应用场景 7
1.4 图数据深度学习 10
1.5 参考文献 13
第2章 神经网络基础 17
2.1 机器学习基本概念 17
2.1.1 机器学习分类 17
2.1.2 机器学习流程概述 18
2.1.3 常见的损失函数 21
2.1.4 梯度下降算法 23
2.2 神经网络 25
2.2.1 神经元 25
2.2.2 多层感知器 27
2.3 激活函数 29
2.3.1 S型激活函数 30
2.3.2 ReLU及其变种 30
2.4 训练神经网络 33
2.4.1 神经网络的运行过程 34
2.4.2 反向传播 34
2.4.3 优化困境 36
2.5 参考文献 38
第3章 卷积神经网络 39
3.1 卷积与池化 39
3.1.1 信号处理中的卷积 39
3.1.2 深度学习中的卷积操作 42
3.1.3 池化 46
3.2 卷积神经网络 46
3.2.1 卷积神经网络的结构 47
3.2.2 卷积神经网络的特点 49
3.3 特殊的卷积形式 51
3.3.1 1×1卷积 51
3.3.2 转置卷积 52
3.3.3 空洞卷积 54
3.3.4 分组卷积 55
3.3.5 深度可分离卷积 55
3.4 卷积网络在图像分类中的应用 56
3.4.1 VGG 56
3.4.2 Inception系列 57
3.4.3 ResNet 60
3.5 参考文献 62
第4章 表示学习 65
4.1 表示学习 65
4.1.1 表示学习的意义 65
4.1.2 离散表示与分布式表示 66
4.1.3 端到端学习是一种强大的表示学习方法 68
4.2 基于重构损失的方法—自编码器 69
4.2.1 自编码器 69
4.2.2 正则自编码器 71
4.2.3 变分自编码器 72
4.3 基于对比损失的方法—Word2vec 75
4.4 参考文献 79
第5章 图信号处理与图卷积神经网络 81
5.1 矩阵乘法的三种方式 81
5.2 图信号与图的拉普拉斯矩阵 83
5.3 图傅里叶变换 85
5.4 图滤波器 90
5.4.1 空域角度 93
5.4.2 频域角度 94
5.5 图卷积神经网络 96
5.6 GCN实战 101
5.7 参考文献 109
第6章 GCN的性质 111
6.1 GCN与CNN的联系 111
6.2 GCN能够对图数据进行端对端学习 115
6.3 GCN是一个低通滤波器 120
6.4 GCN的问题—过平滑 122
6.5 参考文献 127
第7章 GNN的变体与框架 129
7.1 GraphSAGE 129
7.1.1 采样邻居 130
7.1.2 聚合邻居 131
7.1.3 GraphSAGE算法过程 132
7.2 GAT 134
7.2.1 注意力机制 134
7.2.2 图注意力层 137
7.2.3 多头图注意力层 138
7.3 R-GCN 140
7.3.1 知识图谱 140
7.3.2 R-GCN 141
7.4 GNN的通用框架 143
7.4.1 MPNN 143
7.4.2 NLNN 146
7.4.3 GN 147
7.5 GraphSAGE实战 148
7.6 参考文献 153
第8章 图分类 155
8.1 基于全局池化的图分类 155
8.2 基于层次化池化的图分类 156
8.2.1 基于图坍缩的池化机制 157
8.2.2 基于TopK的池化机制 165
8.2.3 基于边收缩的池化机制 168
8.3 图分类实战 169
8.4 参考文献 177
第9章 基于GNN的图表示学习 179
9.1 图表示学习 180
9.2 基于GNN的图表示学习 182
9.2.1 基于重构损失的GNN 183
9.2.2 基于对比损失的GNN 184
9.3 基于图自编码器的推荐系统 188
9.4 参考文献 195
第10章 GNN的应用简介 197
10.1 GNN的应用简述 197
10.2 GNN的应用案例 199
10.2.1 3D视觉 199
10.2.2 基于社交网络的推荐系统 203
10.2.3 视觉推理 205
10.3 GNN的未来展望 208
10.4 参考文献 209
附录A 符号声明 211
· · · · · · (收起)

具体描述

這是一本從原理、算法、實現、應用4個維度詳細講解圖神經網絡的著作,在圖神經網絡領域具有重大的意義。

本書作者是圖神經網絡領域的資深技術專傢,作者所在的公司極驗也是該領域的領先者。本書是作者和極驗多年研究與實踐經驗的總結,內容係統、紮實、深入淺齣,得到瞭白翔、俞棟等多位學術界和企業界領軍人物的高度評價及強烈推薦。

全書共10章:

第1~4章全麵介紹瞭圖、圖數據、捲積神經網絡以及錶示學習等基礎知識,是閱讀本書的預備知識;

第5~6章從理論的角度齣發,講解瞭圖信號處理和圖捲積神經網絡,深入剖析瞭圖捲積神經網絡的性質,並提供瞭GCN實現節點分類的實例;

第7~9章全麵講解瞭圖神經網絡的各種變體及範式、圖分類機製及其實踐,以及基於GNN的圖錶示學習;

第10章介紹瞭圖神經網絡的最新研究和應用。

用户评价

评分

评分

评分

##一言难尽的一本书,有种高中生直接看大物的感觉。要想深入浅出,我觉得读者首先得对卷积神经网络原理,信号学原理熟练掌握,否则看这本书会很懵逼。最后,全书那么多小错误,也太不用心了吧!公式错了可能看不出来,文字的错误可不能原谅了哦

评分

评分

##内容总体上算是入门的,并不精华,总体不如一些微信公众号的文章或则是知乎的文章。我买的在线版本居然还有很多重复的参考文献,非常不专业,不推荐。

评分

其他的都是水军,网上博客东拼西凑之作,别买

评分

##还不错吧

评分

评分

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有