模式識彆與神經網絡

模式識彆與神經網絡 pdf epub mobi txt 电子书 下载 2025

裏普利
圖書標籤:
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
1 Introduction and Examples
1.1 How do neural methods differ?
1.2 The patterm recognition task
1.3 Overview of the remaining chapters
1.4 Examples
1.5 Literature
2 Statistical Decision Theory
2.1 Bayes rules for known distributions
2.2 Parametric models
2.3 Logistic discrimination
2.4 Predictive classification
2.5 Alternative estimation procedures
2.6 How complex a model do we need?
2.7 Performance assessment
2.8 Computational learning approaches
3 Linear Discriminant Analysis
3.1 Classical linear discriminatio
3.2 Linear discriminants via regression
3.3 Robustness
3.4 Shrinkage methods
3.5 Logistic discrimination
3.6 Linear separatio andperceptrons
4 Flexible Diseriminants
4.1 Fitting smooth parametric functions
4.2 Radial basis functions
4.3 Regularization
5 Feed-forward Neural Networks
5.1 Biological motivation
5.2 Theory
5.3 Learning algorithms
5.4 Examples
5.5 Bayesian perspectives
5.6 Network complexity
5.7 Approximation results
6 Non-parametric Methods
6.1 Non-parametric estlmation of class densities
6.2 Nearest neighbour methods
6 3 Learning vector quantization
6.4 Mixture representations
7 Tree-structured Classifiers
7.1 Splitting rules
7.2 Pruning rules
7.3 Missing values
7.4 Earlier approaches
7.5 Refinements
7.6 Relationships to neural networks
7.7 Bayesian trees
8 Belief Networks
8.1 Graphical models and networks
8.2 Causal networks
8 3 Learning the network structure
8.4 Boltzmann machines
8.5 Hierarchical mixtures of experts
9 Unsupervised Methods
9.1 Projection methods
9.2 Multidimensional scaling
9.3 Clustering algorithms
9.4 Self-organizing maps
10 Finding Good Pattern Features
10.1 Bounds for the Bayes error
10.2 Normal class distributions
10.3 Branch-and-bound techniques
10.4 Feature extraction
A Statistical Sidelines
A.1 Maximum likelihood and MAP estimation
A.2 The EM algorithm
A.3 Markov chain Monte Carlo
A.4 Axioms for conditional independence
A.5 Optimization
Glossary
References
Author Index
Subject Index
· · · · · · (收起)

具体描述

《模式識彆與神經網絡(英文版)》是模式識彆和神經網絡方麵的名著,講述瞭模式識彆所涉及的統計方法、神經網絡和機器學習等分支。書的內容從介紹和例子開始,主要涵蓋統計決策理論、綫性判彆分析、彈性判彆分析、前饋神經網絡、非參數方法、樹結構分類、信念網、無監管方法、探尋優良的模式特性等方麵的內容。

《模式識彆與神經網絡(英文版)》可作為統計與理工科研究生課程的教材,對模式識彆和神經網絡領域的研究人員也是極有價值的參考書。

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有