代數拓撲導論 [Algebraic Topology:An Introduction]

代數拓撲導論 [Algebraic Topology:An Introduction] pdf epub mobi txt 电子书 下载 2025

[美] 梅西 著
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510004421
版次:1
商品编码:10184569
包装:平装
外文名称:Algebraic Topology:An Introduction
开本:16开
出版时间:2009-04-01
用纸:胶版纸
页数:261
正文语种:英语

具体描述

內容簡介

This textbook is designed to introduce advanced undergraduate or beginning graduate students to algebraic topology as painlessly as possible. The principal topics treated are 2-dimensional manifolds, the fundamental group, and covering spaces, plus the group theory needed in these topics. The only prerequisites are some group theory, such as that normally contained in an undergraduate algebra course on the junior-senior level, and a one-semester undergraduate course in general topology.
The topics discussed in this book are "standard" in the sense that several well-known textbooks and treatises devote a few sections or a chapter to them. This, I believe, is the first textbook giving a straightforward treatment of these topics, stripped of all unnecessary definitions, terminology, etc., and with numerous examples and exercises, thus making them intelligible to advanced undergraduate students.

內頁插圖

目錄

CHAPTERONETwo-DimensionalManifolds
1 Introduction
2 Definitionandexamplesofn-manifolds
3 Orientablevs.nonorientablemanifolds
4 Examplesofcompact,connected2-manifolds
5 Statementoftheclassificationtheoremforcompactsurfaces
6 Triangulationsofcompactsurfaces
7 ProofofTheorem5.1
8 TheEulercharacteristicofasurface
9 Manifoldswithboundary
10 Theclassificationofcompact,connected2-manifoldswithboundary
11 TheEulercharacteristicofaborderedsurface
12 ModelsofcompactborderedsurfacesinEuclidean3-space
13 Remarksonnoncompactsurfaces

CHAPTERTWOTheFundamentalGroup
1 Introduction
2 Basicnotationandterminology
3 Definitionofthefundamentalgroupofaspace
4 Theeffectofacontinuousmai)pingonthefundamentalgroup
5 Thefundamentalgroupofacircleisinfinitecyclic
6 Application:TheBrouwerfixed-pointtheoremilldimension2
7 Thefundamentalgroupofaproductspace
8 Homotopytypeandhomotopyequivalenceofspaces

CHAPTERTHREEFreeGroupsandFreeProductsofGroups
1 Introduction
2 Theweakproductofabeliangroups
3 Freeabeliangroups
4 Freeproductsofgroups
5 Freegroups
6 Thepresentationofgroupsbygeneratorsandrelations
7 Universalmappingproblems

CHAPTERFOURScifertandVanKampenTheoremontheFundamentalGroupoftheUnionofTwoSpaces.Applic
ations
1 Introduction
2 StatementandproofofthetheoremofSeifertandVanKampen
3 FirstapplicationofTheorem2.1
4 SecondapplicationofTheorem2.1
5 Structureofthefundamentalgroupofacompactsurface
6 Applicationtoknottheory

CHAPTERFIVECoveringSpaces
1 Introduction
2 Definitionandsomeexamplesofcoveringspaces
3 Liftingofpathstoacoveringspace
4 Thefundamentalgroupofacoveringspace
5 Liftingofarbitrarymapstoacoveringspace
6 Homomorphismsandautomorphismsofcoveringspaces
7 Theactionofthegroupπ(X,x)onthesetp-(x)
8 Regularcoveringspacesandquotientspaces
9 Application:TheBorsuk-Ulamtheoremforthe2-sphere
10 Theexistencetheoremforcoveringspaces
11 Theinducedcoveringspaceoverasubspace
12 Pointsettopologyofcoveringspaces

CHAPTERSIXTheFundamentalGroupandCoveringSpacesofaGraph.ApplicationstoGroupTheory
1 Introduction
2 Definitionandexamples
3 Basicpropertiesofgraphs
4 Trees
5 Thefundamentalgroupofagraph
6 TheEulercharacteristicofafinitegraph
7 Coveringspacesofagraph
8 Generatorsforasubgroupoffreegroup

CHAPTERSEVENTheFundamentalGroupofHigherDimensionalSpaces
1 Introduction
2 Adjunctionof2-cellstoaspace
3 Adjunctionofhigherdimensionalcellstoaspace
4 CW-complexes
5 TheKuroshsubgrouptheorem
6 GrushkosTheorem

CHAPTEREIGHTEpilogue
APPENDIXATheQuotientSpaceorIdentificationSpaceTopology
1 Definitionsandbasicproperties
2 Ageneralizationofthequotientspacetopology
3 Quotientspacesandproductspaces
4 Subspaceofaquotientspacevs.quotientspaceofasubspace
5 ConditionsforaquotientspacetobeaHausdorffspace

APPENDIXBPermutationGroupsorTransformationGroups
1 Basicdefinitions
2 HomogeneousG-spaces
Index

前言/序言

  This textbook iS designed to introduce advanced undergraduate or beginning graduate students to algebraic topology as painlessly as pos- sible.The principal topics treated are 2.dimcnsional manifolds.the fundamental group,and covering spaces,plus the group theory needed in these topics.The only prerequisites are some group theory,such as that normally centained jn an undergraduate algebra course on the junior-senior level,and a one·semester undergraduate course in general topology.
  The topics discussed in this book are“standard”in the sense that several well-known textbooks and treatises devote a fey.r sections or a chapter to them.This。I believe,iS the first textbook giving a straight- forward treatment of these topics。stripped of all unnecessary definitions, terminology,etc.,and with numerous examples and exercises,thus making them intelligible to advanced undergraduate students.
  The SUbject matter i8 used in several branches of mathematics other than algebraic topology,such as differential geometry,the theory of Lie groups,the theory of Riemann surfaces。or knot theory.In the develop- merit of the theory,there is a nice interplay between algebra and topology which causes each to reinfoFee interpretations of the other.Such an interplay between different topics of mathematics breaks down the often artificial subdivision of mathematics into difierent“branches”and emphasizes the essential unity of all mathematics.

用户评价

评分

很好…………

评分

可以。。。。。。。。。。。。。。。

评分

给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆

评分

给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆

评分

可以。。。。。。。。。。。。。。。

评分

这个可以作为代数拓扑的入门书

评分

给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆

评分

评分

很基础的书,应该不错,期待代数拓扑学好

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有