教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] pdf epub mobi txt 電子書 下載 2024

圖書介紹


教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics]


[德] 布拉文斯(Braess D.) 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-11-26

類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510042850
版次:3
商品編碼:11004217
包裝:平裝
外文名稱:Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics
開本:24開
齣版時間:2012-03-01
用紙:膠版紙
頁數:365###

教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] pdf epub mobi txt 電子書 下載 2024



具體描述

內容簡介

This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.
The discussion of saddle point problems is a lughlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena.
The numerical solution ofelliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.

內頁插圖

目錄

Preface to the Third English Edition
Preface to the First English Edition
Preface to the German Edition
Notation
Chapter Ⅰ Introduction
1. Examples and Classification of PDE's
Examples
Classification of PDE's
Well-posed problems
Problems
2. The Maximum Ptinciple
Examples
Corollaries
Problem
3. Finite Difference Methods
Discretization
Discrete maximum principle
Problem
4. A Convergence Theory for Difference Methods
Consistency
Local and global error
Limits of the con-vergence theory
Ptoblems

Chapter Ⅱ Conforming Finite Elements
1. Sobolev Spaces
Introduction to Sobolev spaces
Friedrichs' inequality
Possible singularities of H1 functions
Compact imbeddings
Problems
2. Variational Formulation of Elliptic Boundary-Value Problems of Second Order
Variational formulation
Reduction to homogeneous bound- ary conditions
Existence of solutions
Inhomogeneous boundary conditions
Problems
3. The Neumann Boundary-Value Problem. A Trace Theorem
Ellipticity in H
Boundary-value problems with natural bound-ary conditions
Neumann boundary conditions
Mixed boundary conditions
Proof of the trace theorem
Practi- cal consequences of the trace theorem
Problems
4. The Ritz-Galerkin Method and Some Finite Elements
Model problem
Problems
5. Some Standard Finite Elements
Requirements on the meshes
Significance of the differentia-bility properties
Triangular elements with complete polyno-mials
Remarks on Cl elements
Bilinear elements
Quadratic rectangular elements
Affine families
Choiceof an element
Problems
6. Approximation Properties
The Bramble-Hilbert lemma
Triangular elements with com-plete polynomials
Bilinear quadrilateral elements
In-verse estimates
Clement's interpolation
Appendix: On the optimality of the estimates
Problems
7. Error Bounds for Elliptic Problems of Second Order
Remarks on regularity
Error bounds in the energy normL2 estimates
A simple Loo estimate
The L2-projector
Problems
8. Computational Considerations
Assembling the stiffness matrix
Static condensation
Complexity of setting up the matrix
Effect on the choice of a grid
Local mesh refinement
Implementation of the Neumann boundary-value problem
Problems

Chapter Ⅲ Nonconforming and Other Methods
1. Abstract Lemmas and a Simple Boundary Approximation Generalizations of Cea's lemma
Duality methods
The Crouzeix-Raviart element
A simple approximation to curved boundaries
Modifications of the duality argument
Problems
2. Isoparametric Elements
Isoparametric triangular elements
Isoparametric quadrilateral elements
Problems
3. Further Tools from Functional Analysis
Negative norms
Adjoint operators
An abstract exis- tence theorem
An abstract convergence theorem
Proof of Theorem 3.4
Problems
4. Saddle Point Problems
Saddle points and minima
The inf-sup condition
Mixed finite element methods
Fortin interpolation
……
Chapter Ⅳ The Conjugate Gradient Method
Chapter Ⅴ Multigrid Methods
Chapter Ⅵ Finite Elements in Solid Mechanics

前言/序言



教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] 下載 mobi epub pdf txt 電子書
教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

The discussion of saddle point problems is a lughlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena.

評分

不錯,慢慢學習

評分

還沒看,不錯吧!

評分

發貨快,送貨快,包裝仔細嚴實,東西非常不錯,非常滿意,全5分好評

評分

分析單元的力學性質

評分

語言優美清晰,較適閤作為有限元理論的入門書籍

評分

質量不錯,價格優惠!

評分

根據單元的材料性質、形狀、尺寸、節點數目、位置及其含義等,找齣單元節點力和節點位移的關係式,這是單元分析中的關鍵一步。此時需要應用彈性力學中的幾何方程和物理方程來建立力和位移的方程式,從而導齣單元剛度矩陣,這是有限元法的基本步驟之一。

評分

在解偏微分方程的過程中, 主要的難點是如何構造一個方程來逼近原本研究的方程, 並且該過程還需要保持數值穩定性.目前有許多處理的方法, 他們各有利弊. 當區域改變時(就像一個邊界可變的固體), 當需要的精確度在整個區域上變化, 或者當解缺少光滑性時, 有限元方法是在復雜區域(像汽車和輸油管道)上解偏微分方程的一個很好的選擇. 例如, 在正麵碰撞仿真時, 有可能在"重要"區域(例如汽車的前部)增加預先設定的精確度並在車輛的末尾減少精度(如此可以減少仿真所需消耗); 另一個例子是模擬地球的氣候模式, 預先設定陸地部分的精確度高於廣闊海洋部分的精確度是非常重要的.[1]

類似圖書 點擊查看全場最低價

教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有