近代歐氏幾何學 [Asvanced Euclidean Geometry]

近代歐氏幾何學 [Asvanced Euclidean Geometry] pdf epub mobi txt 电子书 下载 2025

[美] 約翰遜 著,單墫 譯
圖書標籤:
  • 幾何學
  • 歐幾裏得幾何
  • 近代幾何
  • 數學
  • 高等數學
  • 幾何證明
  • 數學史
  • 解析幾何
  • 代數幾何
  • 數學教材
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 哈尔滨工业大学出版社
ISBN:9787560335100
版次:1
商品编码:11153192
包装:平装
外文名称:Asvanced Euclidean Geometry
开本:16开
出版时间:2012-01-01
用纸:胶版纸
页数:236
正文语种:中文

具体描述

內容簡介

  《近代歐氏幾何學》探討瞭三角形和圓形的幾何結構,主要專注於歐氏理論的延伸並詳細地研究瞭許多相關定理。在討論的數百個定理和推論中,一些已經給齣瞭完整的證明,另一些未證明的用以留作讀者練習使用。

內頁插圖

精彩書摘

  1 預備知識假定讀者熟悉美國中學通常講授的平麵幾何與初等代數,以及最簡單的三角原理。假定讀者對平麵幾何中的標準定理有一定的熟悉,如果在讀本書之前,復習一下更好。簡單的代數化簡與運算經常用到,幾何關係的錶達式經常通過引入三角函數來化簡,偶爾也利用與它們有關的最基本的恒等式來化簡。中學數學課程裏的三角知識已足夠本書的需要,而自由地運用代數與三角方法對幾何的研究大為方便。不再需要更多的數學知識;當然,熟悉高等幾何的讀者可以常常感覺到本書與其他幾何學的關係。
  本章將介紹全書所采用的一般原理、方法及觀點。數學水平較高的學生對這些原理不會覺得新奇,第一次接觸的讀者也不會覺得非常睏難。
  正負量
  2 有時我們討論的幾何量可以從兩個方嚮中的任一個來度量。通常約定一個方嚮為正,另一個方嚮為負。溫度計是一個熟悉的例子。再如,沿東西嚮的街量距離,可以將嚮東的距離附上正號,嚮西的附上負號。於是,在這段路上行走兩次或更多次,不管各次的方嚮是否相同,結果對齣發點的距離與方嚮等於錶示各次行走的數的代數和。類似的例子可以同樣說明。一般的原理,即某種量的組閤可以用它們的度量的代數和錶示。這種量的度量在下麵定義。
  5對於麵積,通常不計正負,即認為都是正的,但有時需要添上符號。在麵積是由兩條(有嚮)綫段的積確定時,符號就是積的代數符號。另一種方法是考慮繞這麵積的周界行走的方嚮。如果行走方嚮為正(即逆時針方嚮),麵積規定為正。如果行走方嚮為順時針方嚮,麵積為負。但在本書中,很少需要區彆麵積的正負。
  20本章研究平麵上兩個相似形的關係。迴憶一下,在初等幾何中已經證明:“如果兩個圖形的所有對應角都相等,那麼所有的對應綫段成比例,兩個圖形相似。”我們將先討論對應邊互相平行的兩個相似形,並證明過它們每一對對應點的直綫必交於同一點,這點稱為位似中心。在一般情況,兩個相似形在同一平麵,但對應邊不互相平行,這時存在一個相似中心,即自身對應的點,它關於這兩個圖形具有同樣的對應位置。這個點的性質,下麵將詳細討論,以便今後應用。其中,兩個圓的特殊情況給予瞭應有的注意。
  21我們首先考慮位似形,即兩個圖形的對應綫互相平行,並且對應點的連綫交於同一點(圖3)。
  ……

前言/序言


用户评价

评分

书没有de

评分

很喜欢(:..美1.美):..约翰逊1.约翰逊,他的每一本书几本上都有,这本近代欧氏几何学很不错,近代欧氏几何学探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。1预备知识假定读者熟悉美国中学通常讲授的平面几何与初等代数,以及最简单的三角原理。假定读者对平面几何中的标准定理有一定的熟悉,如果在读本书之前,复习一下更好。简单的代数化简与运算经常用到,几何关系的表达式经常通过引入三角函数来化简,偶尔也利用与它们有关的最基本的恒等式来化简。中学数学课程里的三角知识已足够本书的需要,而自由地运用代数与三角方法对几何的研究大为方便。不再需要更多的数学知识当然,熟悉高等几何的读者可以常常感觉到本书与其他几何学的关系。本章将介绍全书所采用的一般原理、方法及观点。数学水平较高的学生对这些原理不会觉得新奇,第一次接触的读者也不会觉得非常困难。正负量2有时我们讨论的几何量可以从两个方向中的任一个来度量。通常约定一个方向为正,另一个方向为负。温度计是一个熟悉的例子。再如,沿东西向的街量距离,可以将向东的距离附上正号,向西的附上负号。于是,在这段路上行走两次或更多次,不管各次的方向是否相同,结果对出发点的距离与方向等于表示各次行走的数的代数和。类似的例子可以同样说明。一般的原理,即某种量的组合可以用它们的度量的代数和表示。这种量的度量在下面定义。5对于面积,通常不计正负,即认为都是正的,但有时需要添上符号。在面积是由两条(有向)线段的积确定时,符号就是积的代数符号。另一种方法是考虑绕这面积的周界行走的方向。如果行走方向为正(即逆时针方向),面积规定为正。如果行走方向为顺时针方向,面积为负。但在本书中,很少需要区别面积的正负。20本章研究平面上两个相似形的关系。回忆一下,在初等几何中已经证明如果两个图形的所有对应角都相等,那么所有的对应线段成比例,两个图形相似。我们将先讨论对应边互相平行的两个相似形,并证明过它们每一对对应点的直线必交于同一点,这点称为位似中心。在一般情况,两个相似形在同一平面,但对应边不互相平行,这时存在一个相似中心,即自身对应的点,它关于这两个图形具有同样的对应位置。这个点的性质,下面将详细讨论,以便今后应用。其中,两个圆的特殊情况给予了应有的注意。21我们首先考虑位似形,即两个图形的对应线互相平行,并且对应点的连线交于同一点(图3)。

评分

做活动买的,很划算,书也不错。

评分

快递不错

评分

很好很满意很不错

评分

做活动买的,很划算,书也不错。

评分

这也是10个字?太多了吧多看书吧

评分

很好的一本书,秒赞10086,正在拜读中*^_^*

评分

好,孩子看着还不错,应该对竞赛有指导作用

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有