內容簡介
本書主要介紹瞭低溫環境下岩石細觀結構及損傷力學特性的研究成果。以寒區岩石工程和人工凍結岩石工程為背景,以CT掃描實驗為研究基礎,采用CT圖像處理技術、損傷理論分析和數值計算相結閤的方法,重點從凍結溫度、細觀結構特徵等方麵研究瞭岩石細觀損傷擴展規律,對工程常見的砂岩、頁岩在凍結作用下熱物理力學特性、水冰含量、溫度分布規律及損傷擴展機理等方麵進行瞭探討。
內頁插圖
目錄
目錄
前言
第1章緒論1
參考文獻6
第2章岩石損傷力學基礎8
2.1損傷及其分類8
2.2損傷力學研究內容及方法9
2.3連續介質損傷力學基本理論12
2.3.1連續介質損傷力學的熱力學基礎12
2.3.2等效性假說15
2.3.3損傷變量與熱力學狀態變量18
2.3.4損傷的測量20
2.4損傷演化方程和損傷本構關係21
2.5岩石類材料損傷本構模型22
2.6岩石損傷理論研究現狀26
2.6.1常溫下岩石損傷理論研究現狀26
2.6.2低溫下岩石損傷力學研究現狀29
參考文獻32
第3章岩石細觀結構損傷38
3.1岩石細觀損傷研究概述38
3.2岩石損傷演化的細觀特徵43
3.2.1細觀損傷演化與細觀主裂紋的形成方式43
3.2.2初始損傷對岩石細觀損傷演化的影響44
3.2.3岩石的細觀主裂紋與分支裂紋特徵45
3.3岩石初始細觀損傷的形式及特點46
3.3.1岩石初始細觀損傷的主要形式46
3.3.2典型岩石初始細觀損傷的特點47
3.4岩石時效損傷的細觀特徵47
3.4.1反復加載條件下岩石的細觀損傷特徵47
3.4.2蠕變條件下岩石細觀損傷48
3.5不同組構岩石細觀損傷形成機製48
3.5.1膠結結構岩石破裂形成機製48
3.5.2結晶聯結岩石的破裂形成機製49
3.6岩石的細觀損傷破壞機理49
3.6.1岩石加載變形過程中各階段的細觀損傷特徵49
3.6.2細觀貫通性主裂紋的形成與岩石破壞50
3.6.3岩石破壞的剪切機理51
3.6.4岩石的細觀損傷破壞機理52
3.7岩石細觀損傷破壞分析理論53
參考文獻56
第4章數字圖像處理理論與技術60
4.1數字圖像處理技術在岩土工程中的應用概況60
4.1.1基於數字圖像的岩土體力學性質分析60
4.1.2基於數字圖像的室內試驗測量63
4.1.3基於數字圖像的現場勘察及地質信息分析65
4.1.4岩體結構數字識彆68
4.1.5隧道掌子麵地質分析69
4.2數字圖像處理基礎71
4.2.1圖像與數字圖像71
4.2.2圖像的灰度值72
4.2.3灰度直方圖72
4.3數字圖像處理的目的和內容73
4.4數字圖像處理的方法74
4.5常用數字圖像處理技術及原理76
4.5.1圖像增強技術76
4.5.2邊緣檢測技術87
4.5.3圖像分割技術89
4.5.4圖像三維重建技術96
參考文獻97
第5章岩石細觀損傷結構的CT識彆100
5.1岩石細觀結構損傷的檢測方法100
5.1.1結構分析法100
5.1.2性能測試法102
5.2岩石細觀損傷力學問題的CT識彆105
5.2.1岩石常規加載試驗的CT損傷檢測106
5.2.2環境因素條件下岩石細觀損傷檢測109
5.2.3CT試驗結果分析方法及應用現狀110
5.3CT掃描技術原理111
5.3.1CT掃描技術的物理原理111
5.3.2CT掃描技術的數學原理112
5.3.3CT圖像的形成及特徵113
5.3.4CT圖像數據的基本公式114
5.3.5CT技術術語的物理解釋116
5.3.6CT試驗在岩石損傷中的應用範圍118
5.3.7岩石細觀損傷CT數與岩石損傷密度119
5.4岩土力學CT試驗過程122
5.4.1岩土力學CT試驗試樣123
5.4.2岩土力學CT試驗過程與方法124
5.5岩石CT試驗分析方法127
5.5.1CT試驗結果分析流程127
5.5.2岩石CT圖像的信息提取127
5.5.3直觀的CT圖像分析法128
5.5.4CT數分析方法129
5.5.5統計頻率分析方法130
5.5.6圖像運算處理法130
5.5.7CT圖像三維重采樣方法131
參考文獻132
第6章常溫壓縮荷載作用下岩石損傷力學試驗研究138
6.1頁岩加載過程的CT試驗138
6.2基於圖像增強技術的損傷分析141
6.2.1僞彩色增強141
6.2.2灰度變換增強144
6.2.3圖像銳化151
6.3加載過程中頁岩細觀結構的獲取154
6.3.1閾值分割法154
6.3.2邊緣檢測法156
6.3.3壓縮荷載下岩石細觀結構的損傷分析161
參考文獻162
第7章低溫凍結岩石細觀結構的CT識彆164
7.1低溫凍結作用對岩石細觀結構損傷的影響分析164
7.1.1低溫凍結作用對孔隙岩石的影響164
7.1.2低溫凍結作用對裂隙岩石的影響165
7.2低溫飽和凍結岩石CT掃描試驗166
7.2.1試驗條件及掃描過程166
7.2.2CT掃描試驗結果及分析170
7.2.3凍結岩石CT圖像的特徵分析176
7.3低溫凍結作用對岩石細觀結構的損傷分析178
7.3.1基於僞彩色增強技術的分析178
7.3.2基於CT數直方圖技術的分析187
7.3.3基於三值化分割技術的分析192
7.3.4基於邊緣檢測技術的分析200
參考文獻205
第8章凍結過程中岩石細觀結構及水冰含量分析207
8.1體視學原理207
8.1.1體視學概況207
8.1.2體視學基本構成關係208
8.1.3凍結岩石細觀結構參數計算公式211
8.2基於體視學原理的凍結過程岩石細觀結構參數定量計算213
8.2.1凍結岩石細觀結構參數隨溫度變化情況描述213
8.2.2凍結岩石細觀結構參數統計及分析217
8.3凍結過程岩石內水冰含量理論錶達及驗證221
8.3.1未凍水含量與溫度關係的熱力學理論221
8.3.2水冰含量與溫度關係的理論公式223
8.3.3基於CT掃描試驗結果的水冰含量理論分析驗證224
8.3.4凍結岩石內冰膨脹力與溫度關係理論錶達式225
參考文獻227
第9章溫度-荷載聯閤作用下岩石宏-細觀損傷力學特性229
9.1岩石細觀力學理論基礎229
9.2荷載作用下凍結岩石宏-細觀損傷本構模型建立233
9.2.1基於細觀力學的凍結岩石等效彈性模量233
9.2.2單軸壓縮荷載作用下凍結岩石損傷本構關係239
9.2.3荷載作用下凍結岩石宏-細觀損傷本構模型的建立242
9.3模型驗證243
9.3.1荷載作用下凍結岩石損傷變量特性分析243
9.3.2荷載作用下凍結岩石損傷本構模型驗證245
參考文獻245
第10章基於數字圖像數值分析方法(DIP-FEM)的凍結岩石損傷特性247
10.1數字圖像數值分析法(DIP-FEM)247
10.2凍融頁岩溫度場分布規律及損傷特性的DIP-FEM分析249
10.2.1頁岩二維細觀結構圖形幾何矢量化249
10.2.2基於DIP-FEM方法的凍融頁岩溫度場分布規律探討251
10.3凍結過程中岩石損傷力學特性的DIP-FEM分析261
10.3.1凍結岩石CT圖像的三維重建261
10.3.2凍結過程中岩石損傷力學特性數值試驗265
10.3.3凍結過程中岩石溫度場分布規律及損傷特性分析267
10.3.4凍結岩石冰膨脹力及受荷峰值強度隨溫度演化規律數
值分析272
參考文獻275
圖版
Contents
Preface
Chapter 1 Introduction 1
References 6
Chapter 2 Introduction of damage mechanics 8
2.1 Damage and classifications 8
2.2 Research contents and methods of damage mechanics 9
2.3 Basic theory of continuum damage mechanics 12
2.3.1 Thermodynamic basis of continuum damage mechanics 12
2.3.2 Equivalence hypothesis 15
2.3.3 Thermodynamic state variables and damage variables 18
2.3.4 Measurement of damage 20
2.4 Damage evolution equations and damage constitutive laws 21
2.5 Damage constitutive models of rock-like material 22
2.6 Research status of rock damage theories 26
2.6.1 Rock damage mechanics at room temperature 26
2.6.2 Rock damage mechanics at subzero temperature 29
References 32
Chapter 3 Meso-structural damage of rock 38
3.1 Summary of research on meso-damage of rock 38
3.2 Meso-characteristics of rock damage evolution 43
3.2.1 Meso-damage evolution and the formation mode of meso-cracks 43
3.2.2 Influence of initial damage on meso-damage evolution of rock 44
3.2.3 Characteristics of the main cracks and branch cracks 45
3.3 Forms and characteristics of rock initial damage 46
3.3.1 Main forms of initial meso-damage of rock 46
3.3.2 Characteristics of typical initial damage in rock 47
3.4 Meso-characteristics of time-dependent damage of rock 47
3.4.1 Meso-damage characteristics of rock under cyclic loading 47
3.4.2 Meso-damage of rock under creep conditions 48
3.5 Mechanisms of meso-damage in rocks with different fabrics 48
3.5.1 Fracture mechanisms of rock with cementation structure 48
3.5.2 Fracture mechanisms of rock with crystalline-boned structure 49
3.6 Meso-damage and failure mechanism of rock 49
3.6.1 Meso-damage characteristics of rock at different loading stages 49
3.6.2 Formation of the main crack and failure of the rock 50
3.6.3 Shear mechanism of rock failure 51
3.6.4 Meso-damage and failure mechanism of rock 52
3.7 Analysis theories of meso-damage and failure in rock 53
References 56
Chapter 4 Theory and technology of digital image processing 60
4.1 Application of digital image processing technology in geotechnical engineering 60
4.1.1 Analysis of mechanical properties of rock and soil based on digital image processing 60
4.1.2 Indoor measurement based on digital image technology 63
4.1.3 Field investigation and geological information analysis based on digital image technology 65
4.1.4 Digital identification of rock mass structure 68
4.1.5 Geological analysis of tunnel faces 69
4.2 Preliminary theories of digital image processing 71
4.2.1 Image and digital image 71
4.2.2 Gray value of images 72
4.2.3 Gray histogram of images 72
4.3 Contents and aims of digital image processing contents 73
4.4 Methods of digital image processing 74
4.5 Common digital image processing technology and principles 76
4.5.1 Image enhancement technology 76
4.5.2 Edge detection technology 87
4.5.3 Image segmentation technology 89
4.5.4 Three dimensional reconstruction technology 96
References 97
Chapter 5 Identification of rock meso-damage structure based on CT technology 100
5.1 Detection method of rock meso-structure and damage 100
5.1.1 Structure analysis method 100
5.1.2 Performance testing method 102
5.2 CT identification of mechanical problems of rock meso-damage 105
5.2.1 CT detection of rock damage under conventional loading 106
5.2.2 Detection of rock meso-damage affect by the environmental factors 109
5.2.3 Analytical method and present status of CT test results 110
5.3 Principle of CT scanning technology 111
5.3.1 Physical principles of CT scanning technology 111
5.3.2 Mathematical principle of CT scanning technology 112
5.3.3 Formation and features of CT images 113
5.3.4 The basic formulas of CT image data 114
5.3.5 Physical interpretation of technical terms in CT 116
5.3.6 Application range of CT technology in rock and soil damage testing 118
5.3.7 CT values of rock meso-damage and rock damage density 119
5.4 CT test process of rock and soil mechanics 122
5.4.1 CT test sample for rock and soil mechanics 123
5.4.2 Procedure and method for CT test in rock and soil mechanics 124
5.5 Analysis method of CT scanning in rock 127
5.5.1 Analytical process of CT test results 127
5.5.2 Information extraction from CT image of rock 127
5.5.3 Intuitive CT image analysis method 128
5.5.4 Analytical method based on CT value 129
5.5.5 Analytical method based on statistical frequency 130
5.5.6 Analytical method based on CT image processing 130
5.5.7 Three dimensional reconstruction method of CT image 131
References 132
Chapter 6 Experimental study on rock damage mechanics under compression load at normal temperature 138
6.1 CT test during shale loading process 138
6.2 Damage analysis based on image enhancement technology 141
6.2.1 Pseudo-color enhancement 141
6.2.2 Enhancement of gray level transformation 144
6.2.3 Image sharpening 151
6.3 Acquisition of meso-structure of shale under loading 154
6.3.1 Threshold segmentation method 154
6.3.2 Edge detection method 156
6.3.3 Damage analysis of rock meso-structure under compression load 161
References 162
Chapter 7 Recognition of meso-structure of frozen rock based on CT technology 164
7.1 Analysis of influence of frost action on rock meso-structure damage 164
7.1.1 Influence of frost action on porous rock 164
7.1.2 Influence of frost action on fractured rock 165
7.2 CT scanning test of frozen saturated rock 166
7.2.1 Test conditions and scanning process 166
7.2.2 CT scanning results and analysis 170
7.2.3 Characteristics analysis of CT images of frozen rock 176
7.3 Analysis of meso-structure damage of rock affected by freezing 178
7.3.1 Analysis based on pseudo-color enhancement technology 178
7.3.2 Analysis based on CT number histogram technology 187
7.3.3 Analysis based on three-valued segmentation technology 192
7.3.4 Analysis based on edge detection technology 200
References 205
Chapter 8 Analysis of rock meso-structure and water (ice) content during freezing 207
8.1 Principals of stereology 207
8.1.1 Introduction of stereo vision 207
8.1.2 Basic composition relation of stereo vision 208
8.1.3 Calculation formulas of meso-structure parameters for frozen rock 211
8.2 Quantitative calculation of meso-structural parameters of rock during freezing based on stereological principals 213
8.2.1 Varication of the meso-structure parameters of frozen rock with change of temperature 213
8.2.2 Statistics analysis of meso-structure parameters of frozen rock 217
8.3 Theoretical analysis and experimental validation of water (ice) content during rock freezing 221
8.3.1 Thermodynamic theory of the relationship between unfrozen water content and temperature 221
8.3.2 Theoretical formula between unfrozen water and ice content and temperature 223
8.3.3 Verificiation of theoretical analysis on unfrozen water (ice) content based on CT scanning 224
8.3.4 Theoretical formula between frost heaving pressure and temperature 225
References 227
Chapter 9 Macro-meso damage mechanical properties of rock under combined action of temperature and loading 229
9.1 Theoretical basis of rock meso-mechanics 229
9.2 Macro-meso damage constitutive model of frozen rock under loading 233
9.2.1 Equivalent elastic modulus of frozen rock based on meso-mechanics233
9.2.2 Damage constitutive relation of frozen rock under uniaxial compression load239
9.2.3 Constitutive model of macro-meso damage of frozen rock under loading242
9.3 Verification of the model 243
9.3.1 Damage variable characteristics of frozen rock under loading 243
9.3.2 Verification of the damage constitutive model of frozen rock under loading 245
References 245
Chapter 10 Damage characteristics of frozen rock based on digital image numerical analysis method (DIP-FEM) 247
10.1 Digital image numerical analysis method (DIP-FEM) 247
10.2 Temperature field distribution and damage characteristics of shale subjected to freeze-thaw cycles based on DIP-FEM method 249
10.2.1 Geometry vector of 2D meso-structure for shale 249
10.2.2 2D temperature field distribution of shale after repeated frost action based on DIP-FEM method 251
10.3 Analysis of damage mechanical properties for shale during freezing by DIP-FEM method 261
10.3.1 Three dimensional reconstruction of CT image of frozen rock 261
10.3.2 Numerical experiment for rock damage during freezing process 265
10.3.3 Temperature field and damage characteristics analysis of rock upon freezing 267
10.3.4 Numerical analysis of evolution law for the ice expansion pressure and the peak strength of frozen rock with temperature change 272
References 275
Plate
前言/序言
我國寒區麵積分布廣泛,永久性和季節性凍結岩土區麵積約占總麵積的75010左右,且多集中在西部地區。國傢“十三五”發展規劃,重點基礎設施建設將嚮西部地區轉移,推動加快完善鐵路、公路骨架網絡、重大水利工程建設,眾多長大隧道、地鐵、水電站和礦山等相繼投入建設。“一帶一路”戰略規劃中也囊括瞭陝西、內濛古、新疆、甘肅、青海等眾多西部省份的重大工程項目。在這些地區實施的寒區岩土工程、液化天然氣和石油氣的低溫地質儲存以及礦井建設中的凍結法施工等工程,都不同程度地存在凍結岩石工程的凍害問題,嚴重影響寒區岩石工程的安全穩定及正常運行。因此,凍結岩石損傷問題的研究對寒區岩土工程建設、礦井建設和低溫液化天然氣儲氣庫的設計、施工及穩定運營等具有重要的理論意義。
處於低溫環境下的岩石是一種自然損傷材料,賦存於岩石內部裂隙及孔隙中的水分發生相變、凍結,導緻物理力學性質不僅與其本身物理構成有關,而且與溫度、內部賦存的水、受力狀態及細觀結構有關。目前,國內外關於凍結岩石物理力學性質及相關理論的研究主要是針對不同行業、不同研究領域具體實際情況開展研究。對凍結岩石的物理力學性質的研究多集中在低溫岩石單軸和三軸力學性能的室內試驗方麵,已有的研究成果涉及凍結岩石的細觀結構特性的還不多見;對低溫環境下岩石損傷擴展特性的研究多集中在凍融循環條件下,藉用凍土力學理論,將凍融工程岩體視為等效多孔介質,從試驗層麵上研究凍融循環條件下岩石基本性質及凍融損傷破壞特性。鑒於岩石損傷與凍土的區彆,已有研究成果對於低溫凍結作用下岩石損傷力學性能影響機理揭示不足。事實上,低溫作用下岩石凍結損傷主要錶現為:凍脹作用下裂隙或孔隙的擴展貫通。因此,這就要求從細觀層次,藉助先進的實驗手段,充分考慮岩石細觀結構特性,建立恰當的細觀損傷力學模型去研究低溫凍結環境下岩石的溫度、含水量、損傷力學特性問題,纔能有效揭示低溫作用下凍結岩石損傷機理。
本書的內容是作者負責的國傢自然科學基金項目(41272340,50974102),陝西省科技創新團隊(2014KCT-30)的部分研究成果。在此,對國傢自然科學基金委員會及陝西省科技廳的資助錶示衷心的感謝。