機器學習導論

機器學習導論 pdf epub mobi txt 电子书 下载 2025

Ethen Alpaydin
圖書標籤:
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版者的话中文版序译者序前言致谢符号表第1章 绪论 1.1 什么是机器学习 1.2 机器学习的应用实例 1.2.1 学习关联性 1.2.2 分类 1.2.3 回归 1.2.4 非监督学习 1.2.5 增强学习 1.3 注释 1.4 相关资源 1.5 习题 1.6 参考文献第2章 监督学习 2.1 由实例学习类 2.2 VC维 2.3 概率逼近正确学习 2.4 噪声 2.5 学习多类 2.6 回归 2.7 模型选择与泛化 2.8 监督机器学习算法的维 2.9 注释 2.10 习题 2.11 参考文献第3章 贝叶斯决策定理 3.1 引言  3.2 分类 3.3 损失与风险 3.4 判别式函数 3.5 效用理论 3.6 信息值 3.7 贝叶斯网络 3.8 影响图 3.9 关联规则 3.10 注释 3.11 习题 3.12 参考文献第4章 参数方法 4.1 引言 4.2 最大似然估计 4.2.1 伯努利密度 4.2.2 多项密度 4.2.3 高斯(正态)密度 4.3 评价估计:偏倚和方差 4.4 贝叶斯估计 4.5 参数分类 4.6 回归 4.7 调整模型的复杂度:偏倚/方差两难选择 4.8 模型选择过程 4.9 注释 4.10 习题 4.11 参考文献第5章 多元方法 5.1 多元数据 5.2 参数估计 5.3 缺失值估计 5.4 多元正态分布 5.5 多元分类……第6章 维度旭纳第7章 聚类第8章 非参数方法第9章 决策树第10章 线性判别式第11章 多层感知器第12章 局部模型 第13章 隐马尔可夫模型 第14章 分类算法评估和比较第15章 组合多学习器第16章 增强学习
· · · · · · (收起)

具体描述

《機器學習導論》對機器學習的定義和應用實例進行瞭介紹,涵蓋瞭監督學習。貝葉斯決策理論。參數方法、多元方法、維度歸約、聚類、非參數方法、決策樹。綫性判彆式、多層感知器,局部模型、隱馬爾可夫模型。分類算法評估和比較,組閤多學習器以及增強學習等。機器學習的目標是對計算機編程,以便使用樣本數據或以往的經驗來解決給定的問題。已經有許多機器學習的成功應用,包括分析以往銷售數據來預測客戶行為,人臉識彆或語音識彆,優化機器人行為以便使用最少的資源來完成任務,以及從生物信息數據中提取知識的各種係統。為瞭對機器學習問題和解進行統一的論述,《機器學習導論》討論瞭機器學習在統計學、模式識彆、神經網絡。人工智能。信號處理、控製和數據挖掘等不同領域的應用。對所有學習算法都進行瞭解釋,以便讀者可以容易地將書中的公式轉變為計算機程序。《機器學習導論》可作為高等院校計算機相關專業高年級本科生和研究生的教材,也可供研究機器學習方法的技術人員參考。

用户评价

评分

##适合入门,挺好

评分

##不推荐!看tom的去吧少年!

评分

##和老师讲的很相似,要是早点看到这本书就好了~

评分

##土耳其人,你数学比卖西瓜的强。

评分

##这翻译......您是谷歌翻译来的吧?

评分

##不推荐!看tom的去吧少年!

评分

##对各种机器学习算法都作了简单介绍 适合初学入门 对机器学习各种算法有个大概的认识 整本书比较偏理论,数学公式比较多

评分

##讲了这么多东西才200多页,还不如叫机器学习目录

评分

##不推荐!看tom的去吧少年!

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有