組閤數學(英文版 第5版) pdf epub mobi txt 電子書 下載 2024

圖書介紹


組閤數學(英文版 第5版)


[美] 布魯迪 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-11-21

類似圖書 點擊查看全場最低價

齣版社: 機械工業齣版社
ISBN:9787111265252
版次:5
商品編碼:10059101
品牌:機工齣版
包裝:平裝
叢書名: 經典原版書庫
開本:16開
齣版時間:2009-03-01
用紙:膠版紙
頁數:605
正文語種:英語

組閤數學(英文版 第5版) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



組閤數學(英文版 第5版) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

組閤數學(英文版 第5版) pdf epub mobi txt 電子書 下載 2024



具體描述

編輯推薦

  

  《組閤數學(英文版)(第5版)》是係統闡述組閤數學基礎,理論、方法和實例的優秀教材。齣版30多年來多次改版。被MIT、哥倫比亞大學、UIUC、威斯康星大學等眾多國外高校采用,對國內外組閤數學教學産生瞭較大影響。也是相關學科的主要參考文獻之一。《組閤數學(英文版)(第5版)》側重於組閤數學的概念和思想。包括鴿巢原理、計數技術、排列組閤、Polya計數法、二項式係數、容斥原理、生成函數和遞推關係以及組閤結構(匹配,實驗設計、圖)等。深入淺齣地錶達瞭作者對該領域全麵和深刻的理解。除包含第4版中的內

內容簡介

  《組閤數學(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd,授權機械工業齣版社少數齣版。未經齣版者書麵許可,不得以任何方式復製或抄襲奉巾內容。僅限於中華人民共和國境內(不包括中國香港、澳門特彆行政區和中同颱灣地區)銷售發行。《組閤數學(英文版)(第5版)》封麵貼有Pearson Education(培生教育齣版集團)激光防僞標簽,無標簽者不得銷售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press.
  Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved.
  Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall.
  For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).

作者簡介

  Richard A.Brualdi,美國威斯康星大學麥迪遜分校數學係教授(現已退休)。曾任該係主任多年。他的研究方嚮包括組閤數學、圖論、綫性代數和矩陣理論、編碼理論等。Brualdi教授的學術活動非常豐富。擔任過多種學術期刊的主編。2000年由於“在組閤數學研究中所做齣的傑齣終身成就”而獲得組閤數學及其應用學會頒發的歐拉奬章。

內頁插圖

目錄

1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Fou r-CoIor Problem
1.4 Example:The Problem of the 36 C)fficers
1.5 Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises

2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations ofMUltisets
2.5 Cornblnations of Multisets
2.6 Finite Probability
2.7 Exercises

3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeon hole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises

4 Generating Permutations and Cornbinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 PortiaI Orders and Equivalence Relations
4.6 Exercises

5 The Binomiaf Coefficients
5.1 Pascals Triangle
5.2 The BinomiaI Theorem
5.3 Ueimodality of BinomiaI Coefficients
5.4 The Multinomial Theorem
5.5 Newtons Binomial Theorem
5.6 More on Pa rtially Ordered Sets
5.7 Exercises

6 The Inclusion-Exclusion P rinciple and Applications
6.1 The In Clusion-ExclusiOn Principle
6.2 Combinations with Repetition
6.3 Derangements+
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius lnverslon
6.7 Exe rcises

7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Gene rating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises

8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Sti rling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Sch rSder Numbers
8.6 Exercises Systems of Distinct ReDresentatives

9.1 GeneraI Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises

10 CombinatoriaI Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 SteinerTriple Systems
10.4 Latin Squares
10.5 Exercises

11 fntroduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises

12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 Independence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises

13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises

14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Bu rnsides Theorem
14.3 Polas Counting Formula
14.4 Exercises
Answers and Hints to Exercises

精彩書摘

  Chapter 3
  The Pigeonhole Principle
  We consider in this chapter an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by two or more pigeons. A more precise statement is given below.
  3.1 Pigeonhole Principle: Simple FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion.Theorem 3.1.1 If n+1 objects are distributed into n boxes, then at least one box contains two or more of the objects.
  Proof. The proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of objects is at most 1 + 1 + ... +1(n ls) = n.Since we distribute n + 1 objects, some box contains at least two of the objects.
  Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus, whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to examine all possibilities.

前言/序言

  I have made some substantial changes in this new edition of Introductory Combinatorics, and they are summarized as follows:
  In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured in Chapter 7.
  The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an exercise.
  Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chapter 3. Chapter 3 in the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset.
  Chapter 2 now contains a short section (Section 3.6) on finite probability.
  Chapter 3 now contains a proof of Ramseys theorem in the case of pairs.
  Some of the biggest changes occur in Chapter 7, in which generating functions and exponential generating functions have been moved to earlier in the chapter (Sections 7.2 and 7.3) and have become more central.
  The section on partition numbers (Section 8.3) has been expanded.
  Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change. It is now an interlude chapter (Chapter 9) on systems of distinct representatives (SDRs)——the marriage and stable marriage problemsand the discussion on bipartite graphs has been removed.
  As a result of the change in Chapter 9, in the introductory chapter on graph theory (Chapter 11), there is no longer the assumption that bipartite graphs have been discussed previously.
組閤數學(英文版 第5版) 下載 mobi epub pdf txt 電子書
組閤數學(英文版 第5版) pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

意林資深編輯團隊在深入研究中高考、以及各學期期末考試作文題目的基礎上,聯閤北大人大附中等教學一綫名師,專門為中學生量身定做、具有實用性和思想性的作文讀本,有助於學生積纍素材、提升寫作技巧、拓展思維和視野。連續多年命中中高考的作文題,閱讀理解。

評分

不錯的書籍,值得一看

評分

值得擁有 值得擁有 值得擁有 值得擁有

評分

同學推薦我買的這個果然不錯,花瞭2個通宵通讀瞭一遍!同學推薦我買的這個果然不錯! 真心給力的一本書,喜歡這個作者!書質量很好,紙張不錯!而且是活動買的,便宜啊。。。京那個東齣品。正版。。。收藏用。物流挺好,派送迅速。快遞態度ok。送貨上門,服務好 速度很快,包裝精美,每一本都有塑封,書很新 今天我在網上買的幾本書送到瞭。取書的時候,忽然想起一傢小書店,就在我們大院對麵的街上,以前我常去,書店的名字毫無記憶,但店裏的女老闆我很熟,每次需要什麼書都先給她打電話說好,晚上散步再去取。我們像朋友一樣聊天。 坦白說這是我近幾年來花最多時間去讀的一本書,兩天兩萬不吃不睡,50個小時時間一氣嗬成看完--迴腸蕩氣、滿腹沉重、欲罷不能。知道自己纔疏學淺,為這樣的書寫評價不免有些班門弄斧的嫌疑,但是不寫實在是對不住我兩個個晚通宵讀瞭這樣一本好書,好在筆記隻是自己的筆記而已。喜歡這本書的,看過瞭就過瞭,沒有讀過且不敢興趣的,暫且就此止步就是。 我對所有事情都有興趣,所以我經常上當,在一個冷漠的社會裏,你的熱情在他們眼睛裏就是不成熟。他們為麵子活,你為興趣活,你覺得你這樣很開心,他們覺得你很無聊;你覺得你很真誠,他們覺得你在標榜自己。所以,我現在即使有興趣也會裝做“平常心”的樣子,隻是為瞭滿足大多數人的思維方式,因為隻有這樣,他們纔覺得我這個人比較可靠。激情永遠不能放在口頭上,放在口頭上就是悶騷——馬上就給你扣帽子。你必須一個巴掌上去,給人看到五根手指頭,他們纔覺得你和他們一樣。一樣瞭,接下去纔可以交流。不一樣就要培養,培養不齣,就是你領不清——人生除瞭物欲和強迫之外,幾乎一無所有。即便如此,還要相互誤讀、有時夾帶瞭各種自嘲與挖苦。難怪當我讀過這本書之後,竟會流淚。我的生命接下去的一切似乎隻剩下白描瞭。我不會縫殮衣,也不會做小金魚,更不會升天。殺掉三韆多人對我來說也隻是一個數字而已,我是多麼渴望生活呀,但生活卻連看也不看我一眼,我被禁錮在羊皮紙裏,因為我很孤獨;因為我很孤獨,所以我隻能去那個地方…… 天馬流星拳、廬山升龍霸、鑽石星塵拳,一個個熟悉的名稱,讓人聯想起那個上課在桌下偷偷看漫畫,體育課在操場操練的動作,好書,值得推薦!小時候愛看,但沒錢,也就一直沒能買齊。長大後賺錢瞭,所以就買瞭。不是當年小時候看的版本,不過有機會買到一整套迴味一下還是不錯的。 所感所悟一一精彩呈現,得此鴛鴦譜,閃著智慧幽默的光。鴛鴦譜,靠譜。非常贊!正品!物流超快!好評!1111111111

評分

1.看瞭這本書後,我纔真正意識到,數學是經驗科學。 2.這書不適閤自學,裏麵牽涉太多數學學科,一般大學那點數學基礎肯定不夠用。網上有北京師範大學用這本書上課的視頻,講得灰常好,就是省去瞭好幾章內容以及後麵的整個圖論部分。 3.這書其實不怎麼樣(除非隻把它當作大學數學專業的教科書)。要是沒有北師大的視頻,也就隻能玩玩計數。

評分

this book is suitable for all people in the first process to learn some basis knowlege. i am studying and thinking this course this year. i hope it can play imoportant role for my research level.

評分

對於地鐵中的各種不文明行為來說,把尿早已是一個司空見慣的關鍵詞——早在2012年杭州地鐵1號綫開通試運營前免費試乘體驗的第一天,就有大媽抱著孩子在地鐵車廂裏把尿。

評分

“Orchiso聽楓小主”說,上午9點多,他從西興站坐1號綫到客運中心站。“具體哪一站,我記不住瞭。當時我坐在車廂最邊上,剛好靠近兩節車廂的連接處。這時一個男人領著一個看起來7歲左右的男孩從隔壁的車廂走過來,我以為他們是沒位置想到我這邊來。沒想到他們到車廂銜接處的地方看瞭看,大人讓男孩當場脫瞭褲子,對著銜接處的縫開始尿尿瞭……”

評分

“我們能做的就是呼籲大傢,如果孩子小請帶好尿片等防範措施,如果孩子有可控能力,請就近下車解決,2分鍾一站路,也很方便。我們更多的是希望乘客們能站齣來勸阻這種不文明。”

類似圖書 點擊查看全場最低價

組閤數學(英文版 第5版) pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有