概率論入門 [A Probability Path]

概率論入門 [A Probability Path] pdf epub mobi txt 电子书 下载 2025

S.I.雷斯尼剋(Sidney I. Resnick) 著
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510058271
版次:1
商品编码:11314934
包装:平装
外文名称:A Probability Path
开本:16开
出版时间:2013-05-01
用纸:胶版纸
页数:453
正文语种:英文

具体描述

內容簡介

  《概率論入門》是一部十分經典的概率論教程。1999年初版,2001年第2次重印,2003年第3次重印,同年第4次重印,2005年第5次重印,受歡迎程度可見一斑。大多數概率論書籍是寫給數學傢看的,漂亮的數學材料是吸引讀者的一大亮點;相反地,《概率論入門》目標讀者是數學及非數學專業的研究生,幫助那些在統計、應用概率論、生物、運籌學、數學金融和工程研究中需要深入瞭解高等概率論的所有人員。

目錄

preface
1 sets and events
1.1 introduction
1.2 basic set theory
1.2.1 indicator functions
1.3 limits of sets
1.4 monotone sequences
1.5 set operations and closure
1.5.1 examples
1.6 the a-field generated by a given class c
1.7 bore1 sets on the real line
1.8 comparing borel sets
1.9 exercises

2 probability spaces
2.1 basic definitions and properties
2.2 more on closure
2.2.1 dynkin's theorem
2.2.2 proof of dynkin's theorem
2.3 two constructions
2.4 constructions of probability spaces
2.4.1 general construction of a probability model
2.4.2 proof of the second extension theorem
2.5 measure constructions
2.5.1 lebesgue measure on (0, 1)
2.5.2 construction of a probability measure on r with given distribution function f (x)
2.6 exercises

3 random variables, elements, and measurable maps
3.1 inverse maps
3.2 measurable maps, random elements,induced probability measures
3.2.1 composition
3.2.2 random elements of metric spaces
3.2.3 measurability and continuity
3.2.4 measurability and limits
3.3 σ-fields generated by maps
3.4 exercises

4 independence
4.1 basic definitions
4.2 independent random variables
4.3 two examples of independence
4.3.1 records, ranks, renyi theorem
4.3.2 dyadic expansions of uniform random numbers
4.4 more on independence: groupings
4.5 independence, zero-one laws, borel-cantelli lemma
4.5.1 borel-cantelli lemma
4.5.2 borel zero-one law
4.5.3 kolmogorov zero-one law
4.6 exercises

5 integration and expectation
5.1 preparation for integration
5.1.1 simple functions
5.1.2 measurability and simple functions
5.2 expectation and integration
5.2.1 expectation of simple functions
5.2.2 extension of the definition
5.2.3 basic properties of expectation
5.3 limits and integrals
5.4 indefinite integrals
5.5 the transformation theorem and densities
5.5.1 expectation is always an integral on r
5.5.2 densities
5.6 the riemann vs lebesgue integral
5.7 product spaces
5.8 probability measures on product spaces
5.9 fubini's theorem
5.10 exercises

6 convergence concepts
6.1 almost sure convergence
6.2 convergence in probability
6.2.1 statistical terminology
6.3 connections between a.s. and j.p. convergence
6.4 quantile estimation
6.5 lp convergence
6.5.1 uniform integrability
6.5.2 interlude: a review of inequalities
6.6 more on lp convergence
6.7 exercises

7 laws of large numbers and sums of independent random variables
7.1 truncation and equivalence
7.2 a general weak law of large numbers
7.3 almost sure convergence of sums of independent random variables
7.4 strong laws of large numbers
7.4.1 two examples
7.5 the strong law of large numbers for lid sequences
7.5.1 two applications of the slln
7.6 the kolmogorov three series theorem
7.6.1 necessity of the kolmogorov three series theorem
7.7 exercises

8 convergence in distribution
8.1 basic definitions
8.2 scheff6's lemma
8.2.1 scheff6's lemma and order statistics
8.3 the baby skorohod theorem
8.3.1 the delta method
8.4 weak convergence equivalences; portmanteau theorem
8.5 more relations among modes of convergence
8.6 new convergences from old
8.6.1 example: the central limit theorem for m-dependent random variables
8.7 the convergence to types theorem
8.7.1 application of convergence to types: limit distributions for extremes
8.8 exercises

9 characteristic functions and the central limit theorem
9.1 review of moment generating functions and the central limit theorem
9.2 characteristic functions: definition and first properties.
9.3 expansions
9.3.1 expansion of eix
9.4 moments and derivatives
9.5 two big theorems: uniqueness and continuity
9.6 the selection theorem, tightness, and prohorov's theorem
9.6.1 the selection theorem
9.6.2 tightness, relative compactness, and prohorov's theorem
9.6.3 proof of the continuity theorem
9.7 the classical clt for iid random variables
9.8 the lindeberg-feller clt
9.9 exercises

10 martingales
10.1 prelude to conditional expectation:the radon-nikodym theorem
10.2 definition of conditional expectation
10.3 properties of conditional expectation
10.4 martingales
10.5 examples of martingales
10.6 connections between martingales and submartingales
10.6.1 doob's decomposition
10.7 stopping times
10.8 positive super martingales
10.8.1 operations on supermartingales
10.8.2 upcrossings
10.8.3 boundedness properties
10.8.4 convergence of positive super martingales
10.8.5 closure
10.8.6 stopping supermartingales
10.9 examples
10.9.1 gambler's ruin
10.9.2 branching processes
10.9.3 some differentiation theory
10.10 martingale and submartingale convergence
10.10.1 krickeberg decomposition
10.10.2 doob's (sub)martingale convergence theorem
10.11 regularity and closure
10.12 regularity and stopping
10.13 stopping theorems
10.14 wald's identity and random walks
10.14.1 the basic martingales
10.14.2 regular stopping times
10.14.3 examples of integrable stopping times
10.14.4 the simple random walk
10.15 reversed martingales
10.16 fundamental theorems of mathematical finance
10.16.1 a simple market model
10.16.2 admissible strategies and arbitrage
10.16.3 arbitrage and martingales
10.16.4 complete markets
10.16.5 option pricing
10.17 exercises
references
index

前言/序言



用户评价

评分

入门好书!

评分

支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东

评分

还不错,纸张很好

评分

我们这届第一次用,感觉书中内容很偏基础,理论有点多,但是质量很高。

评分

好评不断。。。。。。。。。

评分

Goooooooooooooooooood

评分

  在这里,我是不指望能说清 Jaynes 是如何通过测量所谓 common sense 或 state of knowledge 来拓展(狭义)逻辑(就是非真即假),然后用它来解释概率论的,也许会越说越糊涂,毕竟从17世纪产生概率论以来对它的解释困扰了人们近300年。也许一听到“测量 common sense”这样的说法就已经令我们畏惧了,它的恐怖程度不亚于说能造一个会思考有感情的机器。其实不是这样的,让我们先想想逻辑是如何简化我们的思维的:这种狭义的逻辑将人们的思维简化为,叫它们“真|假”也行,“0|1”也行,总之是两个不同的状态,并建立它们之间的运算法则,就是所谓的布尔运算。这样的简化能做些什么?首先我们可以定义集合这一概念(集合的本质就是它和元素的关系只有属于和不属于这两种)以及集合间的运算(我们知道它们都通过逻辑运算定义),它就是一切的原材料,有了它,我们就可以定义各种函数(定义域值域对应关系),构造代数结构(群环域等)以及自然数有理数实数等对象。此外人们还发明了类似“对于任意ε存在δ使得对于任意的……”这样的纯逻辑论述,而这就是所有极限概念定义的基本模式。有了对极限这一逻辑概念的理解我们就可以进一步构造拓扑,测度空间结构以及定义所有数学分析(微积分泛函等)的内容。这样,庞大的数学知识体系由此建立,而这一切只是源于那两条基本假设,就是非真即假以及它们之间的运算规则。我想应该没有再简单的假设了,因为如果只有一种状态,都没差别,就翻不出什么花样了。在 Jaynes 的广义逻辑(extended logic)中,同样有三条而不是二条基本假设(书中叫做 desiderata)。第一条说的也是取值,是实数(注意实数就是用狭义逻辑定义的对象),第二三条定义了运算规则,其中第二条假设说的是大小比较(所以在狭义逻辑中就不需要这条了)。

评分

一部十分经典的概率论教程。

评分

印刷质量一般,但是性价比非常高

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有