內容簡介
《類域論(英文版)》將gauss、legendre和其他的二次和更高階的互反率巧妙結閤,並將這些結果更加一般化,是學習類域理論的入門書籍。《類域論(英文版)》運用傳統方法和原始技巧呈現書中的材料,思路清晰流暢,是這個領域的圖書很難企及的。《類域論(英文版)》可以作為代數數論的研究生教程,尤其適閤自學。書中有大量的練習貫穿始終,已經被證明瞭是一本很成功的教材。
內頁插圖
目錄
1. A Brief Review
1. Number Fields
2. Completions of Number Fields
3. Some General Questions Motivating Class Field Theory
2. Dirichlefs Theorem on Primes in Arithmetic Progressions
1. Characters of Finite Abelian Groups
2. Dirichlet Characters
3. Dirichlet Series
4. Dirichlet抯 Theorem on Primes in Arithmetic Progressions
5. Dirichlet Density
3. Ray Class Groups
1. The Approximation Theorem and Infinite Primes
2. Ray Class Groups and the Universal Norm Index Inequality
3. The Main Theorems of Class Field Theory
4. The Idelic Theory
1. Places of a Number Field
2. A Little Topology
3. The Group of Id^ies of a Number Field
4. Cohomology of Finite Cyclic Groups and the Herbrand Quotient
5. Cyclic Galois Action on Ideles
5. Artin Reciprocity
1. The Conductor of an Abelian Extension of Number Fields and the Artin Symbol
2. Artin Reciprocity
3. An Example: Quadratic Reciprocity
4. Some Preibmnary Results about the Artin Map on Local Fields
6. The Existence Theorem, Consequences and Applications
1. The Ordering Theorem and the Reduction Lemma
2. Kummer n-extensions and the Proof of the Existence Theorem
3. The Artin Map on Local Fields
4. The Hilbert Class Field
5. Arbitrary Finite Extensions of Number Fields
6. Infinite Extensions and an Alternate Proof of the Existence Theorem
7. An Example; Cyclotomic Fields
7. Local Class Field Theory
1. Some Preliminary Facts About Local Fields
2. A Fundamental Exact Sequence
3. Local Units Modulo Norms
4. One-Dimensional Formal Group Laws
5. The Formal Group Laws of Lubin and Tate
6. Lubin-Tate Extensions
7. The Local Artin Map
Bibliography
Index
前言/序言
類域論(英文版) [Class Field Theory] 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
研究數域上阿貝爾擴張的理論。它的基本思想是用基域的算術性質去刻畫它上麵的阿貝爾擴張。設 k是一數域,I是k的一切非零的分式理想構成的乘法群,I也記作l(k)。對於k上的任一阿貝爾擴張K,存在I的一個狹義子群h與K對應,使得k的每個素理想P在K中分裂的充分必要條件是P屬於h。
評分
☆☆☆☆☆
應當指齣,數域上的類域論可以平行地推廣到有限常數域上一元代數函數域上去。
評分
☆☆☆☆☆
應當指齣,數域上的類域論可以平行地推廣到有限常數域上一元代數函數域上去。
評分
☆☆☆☆☆
研究數域上阿貝爾擴張的理論。它的基本思想是用基域的算術性質去刻畫它上麵的阿貝爾擴張。設 k是一數域,I是k的一切非零的分式理想構成的乘法群,I也記作l(k)。對於k上的任一阿貝爾擴張K,存在I的一個狹義子群h與K對應,使得k的每個素理想P在K中分裂的充分必要條件是P屬於h。
評分
☆☆☆☆☆
。這就是用伊代爾群錶述的阿廷互反律。 這樣,阿廷符號就可以以自然的方式開拓到k的任意阿貝爾擴張上去。
評分
☆☆☆☆☆
研究數域上阿貝爾擴張的理論。它的基本思想是用基域的算術性質去刻畫它上麵的阿貝爾擴張。設 k是一數域,I是k的一切非零的分式理想構成的乘法群,I也記作l(k)。對於k上的任一阿貝爾擴張K,存在I的一個狹義子群h與K對應,使得k的每個素理想P在K中分裂的充分必要條件是P屬於h。
評分
☆☆☆☆☆
研究數域上阿貝爾擴張的理論。它的基本思想是用基域的算術性質去刻畫它上麵的阿貝爾擴張。設 k是一數域,I是k的一切非零的分式理想構成的乘法群,I也記作l(k)。對於k上的任一阿貝爾擴張K,存在I的一個狹義子群h與K對應,使得k的每個素理想P在K中分裂的充分必要條件是P屬於h。[1]
評分
☆☆☆☆☆
應當指齣,數域上的類域論可以平行地推廣到有限常數域上一元代數函數域上去。
評分
☆☆☆☆☆
應當指齣,數域上的類域論可以平行地推廣到有限常數域上一元代數函數域上去。