Python數據科學指南 pdf epub mobi txt 電子書 下載 2024

圖書介紹


Python數據科學指南


印度,Gopi,Subramanian,薩伯拉曼尼安 著,方延風,劉丹 譯



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-11-22

類似圖書 點擊查看全場最低價

齣版社: 人民郵電齣版社
ISBN:9787115435101
版次:1
商品編碼:12071866
品牌:異步圖書
包裝:平裝
開本:16開
齣版時間:2016-11-01
用紙:膠版紙
頁數:380
正文語種:中文

Python數據科學指南 epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



Python數據科學指南 epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

Python數據科學指南 pdf epub mobi txt 電子書 下載 2024



具體描述

産品特色

編輯推薦

本書從講解如何在數據科學中應用Python開始,陸續介紹瞭Python的工作環境,如何用Python分析數據,以及數據挖掘的概念,然後又擴展到機器學習。本書還涵蓋瞭縮減原則、集成方法、隨機森林、鏇轉森林和超樹等方麵的內容,這些都是一個成功的數據科學專傢所必需掌握的。
閱讀本書,你將學會:
■ 揭示數據科學算法的完整範疇;
■ 高效地掌握和使用numpy、scipy、scikit-learn和matplotlib等Python庫;
■ 瞭解進階迴歸方法的建模和變量選擇;
■ 進一步徹底理解集成方法的潛在含義及實施;
■ 在各種各樣的數值和文本數據集上解決實際問題;
■ 熟悉先進的算法,如梯度提升、隨機森林、鏇轉森林等。
本書特色:
■ 內容明確且易於跟學;
■ 甄選重要的任務與問題;
■ 精心組織編排內容,有效解決問題;
■ 清晰易懂的講解方式;
■ 書中呈現的解決方案能夠直接應用到實際問題中。

內容簡介

Python作為一種高級程序設計語言,憑藉其簡潔、易讀及可擴展性日漸成為程序設計領域備受推崇的語言,並成為數據科學傢的必讀之一。
本書詳細介紹瞭Python在數據科學中的應用,包括數據探索、數據分析與挖掘、機器學習、大規模機器學習等主題。每一章都為讀者提供瞭足夠的數學知識和代碼示例來理解不同深度的算法功能,幫助讀者更好地掌握各個知識點。
本書內容結構清晰,示例完整,無論是數據科學領域的新手,還是經驗豐富的數據科學傢都將從中獲益。

作者簡介

Gopi Subramanian是一名數據科學傢,他在數據挖掘與機器學習領域有著超過15年經驗。在過去的10年中,他設計、構思、開發並領導瞭數據挖掘、文本挖掘、自然語言處理、信息提取和檢索等多個項目,涉及不同領域和商務垂直係統。他在美國和印度的專利局共計申請瞭10多項專利,並以自己的名義齣版瞭許多書籍。

目錄

目錄

第1章 Python在數據科學中的應用 1
1.1 簡介 2
1.2 使用字典對象 2
1.2.1 準備工作 2
1.2.2 操作方法 2
1.2.3 工作原理 3
1.2.4 更多內容 4
1.2.5 參考資料 6
1.3 使用字典的字典 6
1.3.1 準備工作 6
1.3.2 操作方法 6
1.3.3 工作原理 7
1.3.4 參考資料 7
1.4 使用元組 7
1.4.1 準備工作 7
1.4.2 操作方法 8
1.4.3 工作原理 9
1.4.4 更多內容 12
1.4.5 參考資料 12
1.5 使用集閤 13
1.5.1 準備工作 13
1.5.2 操作方法 13
1.5.3 工作原理 14
1.5.4 更多內容 15
1.6 寫一個列錶 16
1.6.1 準備工作 16
1.6.2 操作方法 16
1.6.3 工作原理 18
1.6.4 更多內容 19
1.7 從另一個列錶創建列錶——列錶推導 20
1.7.1 準備工作 20
1.7.2 操作方法 20
1.7.3 工作原理 20
1.7.4 更多內容 21
1.8 使用迭代器 22
1.8.1 準備工作 22
1.8.2 操作方法 23
1.8.3 工作原理 23
1.8.4 更多內容 24
1.9 生成一個迭代器和生成器 24
1.9.1 準備工作 25
1.9.2 操作方法 25
1.9.3 工作原理 25
1.9.4 更多內容 25
1.10 使用可迭代對象 26
1.10.1 準備工作 26
1.10.2 操作方法 26
1.10.3 工作原理 27
1.10.4 參考資料 27
1.11 將函數作為變量傳遞 28
1.11.1 準備工作 28
1.11.2 操作方法 28
1.11.3 工作原理 28
1.12 在函數中嵌入函數 28
1.12.1 準備工作 29
1.12.2 操作方法 29
1.12.3 工作原理 29
1.13 將函數作為參數傳遞 29
1.13.1 準備工作 29
1.13.2 操作方法 29
1.13.3 工作原理 30
1.14 返迴一個函數 30
1.14.1 準備工作 31
1.14.2 操作方法 31
1.14.3 工作原理 31
1.14.4 更多內容 32
1.15 使用裝飾器改變函數行為 32
1.15.1 準備工作 32
1.15.2 操作方法 32
1.15.3 工作原理 33
1.16 使用lambda創造匿名函數 34
1.16.1 準備工作 34
1.16.2 操作方法 35
1.16.3 工作原理 35
1.17 使用映射函數 35
1.17.1 準備工作 36
1.17.2 操作方法 36
1.17.3 工作原理 36
1.17.4 更多內容 36
1.18 使用過濾器 37
1.18.1 準備工作 37
1.18.2 操作方法 37
1.18.3 工作原理 38
1.19 使用zip和izip函數 38
1.19.1 準備工作 38
1.19.2 操作方法 38
1.19.3 工作原理 38
1.19.4 更多內容 39
1.19.5 參考資料 40
1.20 從錶格數據使用數組 40
1.20.1 準備工作 40
1.20.2 操作方法 41
1.20.3 工作原理 41
1.20.4 更多內容 42
1.21 對列進行預處理 43
1.21.1 準備工作 44
1.21.2 操作方法 44
1.21.3 工作原理 45
1.21.4 更多內容 45
1.22 列錶排序 46
1.22.1 準備工作 46
1.22.2 操作方法 46
1.22.3 工作原理 46
1.22.4 更多內容 47
1.23 采用鍵排序 47
1.23.1 準備工作 48
1.23.2 操作方法 48
1.23.3 工作原理 49
1.23.4 更多內容 49
1.24 使用itertools 52
1.24.1 準備工作 52
1.24.2 操作方法 52
1.24.3 工作原理 53
第2章 Python環境 55
2.1 簡介 55
2.2 使用NumPy庫 55
2.2.1 準備工作 55
2.2.2 操作方法 56
2.2.3 工作原理 58
2.2.4 更多內容 64
2.2.5 參考資料 64
2.3 使用matplotlib進行繪畫 64
2.3.1 準備工作 64
2.3.2 操作方法 64
2.3.3 工作原理 66
2.3.4 更多內容 72
2.4 使用scikit-learn進行機器學習 73
2.4.1 準備工作 73
2.4.2 操作方法 73
2.4.3 工作原理 75
2.4.4 更多內容 81
2.4.5 參考資料 82
第3章 數據分析——探索與爭鳴 83
3.1 簡介 84
3.2 用圖錶分析單變量數據 85
3.2.1 準備工作 85
3.2.2 操作方法 86
3.2.3 工作原理 87
3.2.4 參考資料 92
3.3 數據分組和使用點陣圖 92
3.3.1 準備工作 93
3.3.2 操作方法 93
3.3.3 工作原理 95
3.3.4 參考資料 97
3.4 為多變量數據繪製散點陣圖 97
3.4.1 準備工作 98
3.4.2 操作方法 98
3.4.3 工作原理 99
3.4.4 參考資料 100
3.5 使用熱圖 101
3.5.1 準備工作 101
3.5.2 操作方法 101
3.5.3 工作原理 102
3.5.4 更多內容 104
3.5.5 參考資料 105
3.6 實施概要統計及繪圖 105
3.6.1 準備工作 105
3.6.2 操作方法 106
3.6.3 工作原理 107
3.6.4 參考資料 110
3.7 使用箱須圖 110
3.7.1 準備工作 110
3.7.2 操作方法 110
3.7.3 工作原理 111
3.7.4 更多內容 112
3.8 修補數據 113
3.8.1 準備工作 113
3.8.2 操作方法 113
3.8.3 工作原理 114
3.8.4 更多內容 115
3.8.5 參考資料 116
3.9 實施隨機采樣 116
3.9.1 準備工作 116
3.9.2 操作方法 117
3.9.3 工作原理 117
3.9.4 更多內容 118
3.10 縮放數據 118
3.10.1 準備工作 118
3.10.2 操作方法 118
3.10.3 工作原理 119
3.10.4 更多內容 119
3.11 數據標準化 121
3.11.1 準備工作 121
3.11.2 操作方法 121
3.11.3 工作原理 122
3.11.4 更多內容 122
3.12 實施分詞化 123
3.12.1 準備工作 123
3.12.2 操作方法 123
3.12.3 工作原理 124
3.12.4 更多內容 125
3.12.5 參考資料 127
3.13 刪除停用詞 127
3.13.1 操作方法 128
3.13.2 工作原理 129
3.13.3 更多內容 130
3.13.4 參考資料 130
3.14 詞提取 130
3.14.1 準備工作 131
3.14.2 操作方法 132
3.14.3 工作原理 132
3.14.4 更多內容 133
3.14.5 參考資料 133
3.15 執行詞形還原 134
3.15.1 準備工作 134
3.15.2 操作方法 134
3.15.3 工作原理 135
3.15.4 更多內容 135
3.15.5 參考資料 135
3.16 詞袋模型錶示文本 136
3.16.1 準備工作 136
3.16.2 操作方法 136
3.16.3 工作原理 138
3.16.4 更多內容 140
3.16.5 參考資料 141
3.17 計算詞頻和反文檔頻率 142
3.17.1 準備工作 142
3.17.2 操作方法 142
3.17.3 工作原理 144
3.17.4 更多內容 145
第4章 數據分析——深入理解 146
4.1 簡介 146
4.2 抽取主成分 147
4.2.1 準備工作 148
4.2.2 操作方法 149
4.2.3 工作原理 151
4.2.4 更多內容 152
4.2.5 參考資料 154
4.3 使用核PCA 154
4.3.1 準備工作 154
4.3.2 操作方法 154
4.3.3 工作原理 156
4.3.4 更多內容 159
4.4 使用奇異值分解抽取特徵 160
4.4.1 準備工作 161
4.4.2 操作方法 161
4.4.3 工作原理 162
4.4.4 更多內容 163
4.5 用隨機映射給數據降維 164
4.5.1 準備工作 164
4.5.2 操作方法 165
4.5.3 工作原理 166
4.5.4 更多內容 167
4.5.5 參考資料 168
4.6 用NMF分解特徵矩陣 168
4.6.1 準備工作 169
4.6.2 操作方法 170
4.6.3 工作原理 172
4.6.4 更多內容 175
4.6.5 參考資料 176
第5章 數據挖掘——海底撈針 177
5.1 簡介 177
5.2 使用距離度量 178
5.2.1 準備工作 178
5.2.2 操作方法 179
5.2.3 工作原理 180
5.2.4 更多內容 183
5.2.5 參考資料 184
5.3 學習和使用核方法 184
5.3.1 準備工作 184
5.3.2 操作方法 185
5.3.3 工作原理 186
5.3.4 更多內容 187
5.3.5 參考資料 187
5.4 用k-means進行數據聚類 188
5.4.1 準備工作 188
5.4.2 操作方法 190
5.4.3 工作原理 191
5.4.4 更多內容 192
5.4.5 參考資料 193
5.5 學習嚮量量化 193
5.5.1 準備工作 193
5.5.2 操作方法 194
5.5.3 工作原理 197
5.5.4 更多內容 199
5.5.5 參考資料 199
5.6 在單變量數據中找齣異常點 200
5.6.1 準備工作 200
5.6.2 操作方法 202
5.6.3 工作原理 203
5.6.4 更多內容 205
5.6.5 參考資料 207
5.7 使用局部異常因子方法發現異常點 207
5.7.1 準備工作 207
5.7.2 操作方法 208
5.7.3 工作原理 210
5.7.4 更多內容 216
第6章 機器學習1 217
6.1 簡介 217
6.2 為建模準備數據 218
6.2.1 準備工作 218
6.2.2 操作方法 218
6.2.3 工作原理 221
6.2.4 更多內容 222
6.3 查找最近鄰 223
6.3.1 準備工作 224
6.3.2 操作方法 226
6.3.3 工作原理 227
6.3.4 更多內容 229
6.3.5 參考資料 230
6.4 用樸素貝葉斯分類文檔 230
6.4.1 準備工作 232
6.4.2 操作方法 232
6.4.3 工作原理 238
6.4.4 更多內容 242
6.4.5 參考資料 242
6.5 構建決策樹解決多類問題 243
6.5.1 準備工作 244
6.5.2 操作方法 247
6.5.3 工作原理 249
6.5.4 更多內容 251
6.5.5 參考資料 252
第7章 機器學習2 253
7.1 簡介 253
7.2 迴歸方法預測實數值 254
7.2.1 準備工作 255
7.2.2 操作方法 256
7.2.3 工作原理 259
7.2.4 更多內容 263
7.2.5 參考資料 267
7.3 學習L2縮減迴歸——嶺迴歸 267
7.3.1 準備工作 268
7.3.2 操作方法 268
7.3.3 工作原理 271
7.3.4 更多內容 273
7.3.5 參考資料 276
7.4 學習L1縮減迴歸——LASSO 276
7.4.1 準備工作 277
7.4.2 操作方法 277
7.4.3 工作原理 280
7.4.4 更多內容 283
7.4.5 參考資料 283
7.5 L1和L2縮減交叉驗證迭代 283
7.5.1 準備工作 284
7.5.2 操作方法 284
7.5.3 工作原理 288
7.5.4 更多內容 294
7.5.5 參考資料 295
第8章 集成方法 296
8.1 簡介 296
8.2 理解集成——掛袋法 297
8.2.1 準備工作 298
8.2.2 操作方法 298
8.2.3 工作原理 300
8.2.4 更多內容 304
8.2.5 參考資料 305
8.3 理解集成——提升法 305
8.3.1 準備工作 307
8.3.2 操作方法 307
8.3.3 工作原理 312
8.3.4 更多內容 319
8.3.5 參考資料 319
8.4 理解集成——梯度提升 320
8.4.1 準備工作 321
8.4.2 操作方法 321
8.4.3 工作原理 325
8.4.4 更多內容 330
8.4.5 參考資料 330
第9章 生長樹 331
9.1 簡介 331
9.2 從生長樹到生長森林——隨機森林 332
9.2.1 準備工作 333
9.2.2 操作方法 333
9.2.3 工作原理 336
9.2.4 更多內容 340
9.2.5 參考資料 342
9.3 生成超隨機樹 342
9.3.1 準備工作 343
9.3.2 操作方法 343
9.3.3 工作原理 345
9.3.4 更多內容 349
9.3.5 參考資料 349
9.4 生成鏇轉森林 349
9.4.1 準備工作 350
9.4.2 操作方法 350
9.4.3 工作原理 353
9.4.4 更多內容 358
9.4.5 參考資料 358
第10章 大規模機器學習——在綫學習 359
10.1 簡介 359
10.2 用感知器作為在綫學習算法 360
10.2.1 準備工作 361
10.2.2 操作方法 362
10.2.3 工作原理 363
10.2.4 更多內容 366
10.2.5 參考資料 367
10.3 用隨機梯度下降解決迴歸問題 367
10.3.1 準備工作 369
10.3.2 操作方法 369
10.3.3 工作原理 370
10.3.4 更多內容 373
10.3.5 參考資料 375
10.4 用隨機梯度下降解決分類問題 375 Python數據科學指南 下載 mobi epub pdf txt 電子書
Python數據科學指南 pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

好書值得買的,好書值得讀。

評分

隻能說一般般

評分

不錯吧,有用

評分

包裝完整,搞活動買的,每滿200-100,超值!

評分

紫薯布丁紫薯布丁,産品不錯

評分

不是很好。內容有少許錯誤。

評分

書的質量很好,快遞也很快,價格也很好。

評分

挺好,挺好

評分

還沒看,看後再追評吧

類似圖書 點擊查看全場最低價

Python數據科學指南 pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有