圖神經網絡導論

圖神經網絡導論 pdf epub mobi txt 电子书 下载 2025

劉知遠
圖書標籤:
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
第 1章 引论 1
1.1 设计动机 1
1.1.1 卷积神经网络 1
1.1.2 图嵌入 3
1.2 相关工作 3
第 2章 数学和图论基础 7
2.1 线性代数 7
2.1.1 基本概念 7
2.1.2 特征分解 10
2.1.3 奇异值分解 11
2.2 概率论 12
2.2.1 基本概念和公式 12
2.2.2 概率分布 14
2.3 图论 15
2.3.1 基本概念 16
2.3.2 图的代数表示 16
第3章 神经网络基础 19
3.1 神经元 19
3.2 后向传播 22
3.3 神经网络 24
第4章 基础图神经网络 27
4.1 概述 27
4.2 模型介绍 28
4.3 局限性 30
第5章 卷积图神经网络 33
5.1 基于谱分解的方法 33
5.1.1 Spectral Network 33
5.1.2 ChebNet 34
5.1.3 GCN 35
5.1.4 AGCN 36
5.2 基于空间结构的方法 37
5.2.1 Neural FP 37
5.2.2 PATCHY-SAN 38
5.2.3 DCNN 40
5.2.4 DGCN 40
5.2.5 LGCN 42
5.2.6 MoNet 44
5.2.7 GraphSAGE 45
第6章 循环图神经网络 47
6.1 GGNN 47
6.2 Tree-LSTM 49
6.3 Graph-LSTM 50
6.4 S-LSTM 51
第7章 图注意力网络 55
7.1 GAT 55
7.2 GaAN 57
第8章 图残差网络 59
8.1 Highway GCN 59
8.2 Jump Knowledge Network 60
8.3 DeepGCN 62
第9章 不同图类型的模型变体 65
9.1 有向图 65
9.2 异构图 66
9.3 带有边信息的图 68
9.4 动态图 70
9.5 多维图 72
第 10章 高级训练方法 75
10.1 采样 75
10.2 层级池化 78
10.3 数据增广 80
10.4 无监督训练 80
第 11章 通用框架 83
11.1 MPNN 83
11.2 NLNN 85
11.3 GN 87
第 12章 结构化场景应用 93
12.1 物理学 93
12.2 化学和生物学 95
12.2.1 分子指纹 95
12.2.2 化学反应预测 97
12.2.3 药物推荐 97
12.2.4 蛋白质和分子交互预测 98
12.3 知识图谱 99
12.3.1 知识图谱补全 99
12.3.2 归纳式知识图谱嵌入 100
12.3.3 知识图谱对齐 101
12.4 推荐系统 102
12.4.1 矩阵补全 103
12.4.2 社交推荐 104
第 13章 非结构化场景应用 105
13.1 图像领域 105
13.1.1 图像分类 105
13.1.2 视觉推理 108
13.1.3 语义分割 109
13.2 文本领域 110
13.2.1 文本分类 110
13.2.2 序列标注 111
13.2.3 神经机器翻译 112
13.2.4 信息抽取 113
13.2.5 事实验证 114
13.2.6 其他应用 116
第 14章 其他场景应用 117
14.1 生成模型 117
14.2 组合优化 119
第 15章 开放资源 121
15.1 数据集 121
15.2 代码实现 123
第 16章 总结 125
16.1 浅层结构 125
16.2 动态图 126
16.3 非结构化场景 126
16.4 可扩展性 126
参考文献 129
作者简介 148
· · · · · · (收起)

具体描述

清華大學劉知遠力作,一書輕鬆構建GNN知識體係。

前沿:圖神經網絡(GNN)已風靡深度學習領域

全麵:綜述流行的GNN框架以及應用場景

新增:在英文版的基礎上增補更多內容

力薦:多位AI先鋒學者聯袂推薦

精美:采用高檔純質紙,全彩印刷,適閤珍藏

圖神經網絡(GNN)是基於深度學習的圖數據處理方法,因其卓越的性能而受到廣泛關注。本書全麵介紹瞭GNN的基本概念、具體模型和實際應用。書中首先概述數學基礎和神經網絡以及圖神經網絡的基本概念,接著介紹不同種類的GNN,包括捲積圖神經網絡、循環圖神經網絡、圖注意力網絡、圖殘差網絡,以及幾個通用框架。此外,本書還介紹瞭GNN在結構化場景、非結構化場景和其他場景中的應用。讀完本書,你將對GNN的最新成果和發展方嚮有較為透徹的認識。

用户评价

评分

##可以当入门综述,但是太贵了

评分

##非常简略,感觉只适合作为论文速查手册;扣一分给价格

评分

##走马观花似的罗列各种 GNN 模型和论文中的公式,看完基本上只能记住个名字吧

评分

评分

评分

评分

评分

##非常简略,感觉只适合作为论文速查手册;扣一分给价格

评分

##一星都嫌多!简直垃圾

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有