微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf epub mobi txt 電子書 下載 2024

圖書介紹


微分幾何基礎(英文版) [Fundamentals of Differential Geometry]


[美] 朗 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-11-24

類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510005404
版次:1
商品編碼:10104514
包裝:平裝
外文名稱:Fundamentals of Differential Geometry
開本:16開
齣版時間:2010-01-01
用紙:膠版紙
頁數:535
正文語種:英語

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf epub mobi txt 電子書 下載 2024



具體描述

內容簡介

《微分幾何基礎(英文版)》介紹瞭微分拓撲、微分幾何以及微分方程的基本概念。《微分幾何基礎(英文版)》的基本思想源於作者早期的《微分和黎曼流形》,但重點卻從流形的一般理論轉移到微分幾何,增加瞭不少新的章節。這些新的知識為Banach和Hilbert空間上的無限維流形做準備,但一點都不覺得多餘,而優美的證明也讓讀者受益不淺。在有限維的例子中,討論瞭高維微分形式,繼而介紹瞭Stokes定理和一些在微分和黎曼情形下的應用。給齣瞭Laplacian基本公式,展示瞭其在浸入和浸沒中的特徵。書中講述瞭該領域的一些主要基本理論,如:微分方程的存在定理、少數性、光滑定理和嚮量域流,包括子流形管狀鄰域的存在性的嚮量叢基本理論,微積分形式,包括經典2-形式的辛流形基本觀點,黎曼和僞黎曼流形協變導數以及其在指數映射中的應用,Cartan-Hadamard定理和變分微積分一基本定理。目次:(一部分)一般微分方程;微積分;流形;嚮量叢;嚮量域和微分方程;嚮量域和微分形式運算;Frobenius定理;(第二部分)矩陣、協變導數和黎曼幾何:矩陣;協變導數和測地綫;麯率;二重切綫叢的張量分裂;麯率和變分公式;半負麯率例子;自同構和對稱;浸入和浸沒;(第三部分)體積形式和積分:體積形式;微分形式的積分;Stokes定理;Stokes定理的應用;譜理論。

內頁插圖

目錄

Foreword
Acknowledgments
PART Ⅰ
General Differential Theory,
CHAPTER Ⅰ
Oifferenlial Calculus
Categories
Topological Vector Spaces
Derivatives and Composition of Maps
Integration and Taylors Formula
The Inverse Mapping Theorem

CHAPTER Ⅱ
Manifolds
Atlases, Charts, Morphisms
Submanifolds, Immersions, Submersions
Partitions of Unity
Manifolds with Boundary

CHAPTER Ⅲ
Vector Bundles
Definition, Pull Backs
The Tangent Bundle
Exact Sequences of Bundles
Operations on Vector Bundles
Splitting of Vector Bundles

CHAPTER Ⅳ
Vector Fields and Differential Equations
Existence Theorem for Differential Equations .
Vector Fields, Curves, and Flows
Sprays
The Flow of a Spray and the Exponential Map
Existence of Tubular Neighborhoods
Uniqueness of Tubular Neighborhoods

CHAPTER Ⅴ
Operations on Vector Fields and Differential Forms
Vector Fields, Differential Operators, Brackets
Lie Derivative
Exterior Derivative
The Poincar Lemma
Contractions and Lie Derivative
Vector Fields and l-Forms Under Self Duality
The Canonical 2-Form
Darbouxs Theorem

CHAPTER Ⅵ
The Theorem of Frobenius
Statement of the Theorem
Differential Equations Depending on a Parameter
Proof of the Theorem
The Global Formulation
Lie Groups and Subgroups

PART Ⅱ
Metrics, Covariant Derivatives, and Riemannian Geometry

CHAPTER Ⅶ
Metrics
Definition and Functoriality
The Hilbert Group
Reduction to the Hilbert Group
Hilbertian Tubular Neighborhoods
The Morse-Palais Lemma
The Riemannian Distance
The Canonical Spray

CHAPTER Ⅷ
Covariant Derivatives and Geodesics.
Basic Properties
Sprays and Covariant Derivatives
Derivative Along a Curve and Parallelism
The Metric Derivative
More Local Results on the Exponential Map
Riemannian Geodesic Length and Completeness

CHAPTER Ⅸ
Curvature
The Riemann Tensor
Jacobi Lifts
Application of Jacobi Lifts to Texpx
Convexity Theorems
Taylor Expansions

CHAPTER Ⅹ
Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle
Convexity of Jacobi Lifts
Global Tubular Neighborhood of a Totally Geodesic Submanifold.
More Convexity and Comparison Results
Splitting of the Double Tangent Bundle
Tensorial Derivative of a Curve in TX and of the Exponential Map
The Flow and the Tensorial Derivative

CHAPTER XI
Curvature and the Variation Formula
The Index Form, Variations, and the Second Variation Formula
Growth of a Jacobi Lift
The Semi Parallelogram Law and Negative Curvature
Totally Geodesic Submanifolds
Rauch Comparison Theorem
CHAPTER XII
An Example of Seminegative Curvature
Pos,,(R) as a Riemannian Manifold
The Metric Increasing Property of the Exponential Map
Totally Geodesic and Symmetric Submanifolds

CHAPTER XIII
Automorphisms and Symmetries.,
The Tensorial Second Derivative
Alternative Definitions of Killing Fields
Metric Killing Fields
Lie Algebra Properties of Killing Fields
Symmetric Spaces
Parallelism and the Riemann Tensor
CHAPTER XlV
Immersions and Submersions .
The Covariant Derivative on a Submanifoid
The Hessian and Laplacian on a Submanifold
The Covariant Derivative on a Riemhnnian Submersion .
The Hessian and Laplacian on a Riemannian Submersion
The Riemann Tensor on Submanifolds
The Riemann Tensor on a Riemannian Submersion

PART III
Volume Forms and Integration
CHAPTER XV
Volume Forms
Volume Forms and the Divergence
Covariant Derivatives
The Jacobian Determinant of the Exponential Map
The Hodge Star on Forms
Hodge Decomposition of Differential Forms
Volume Forms in a Submersion
Volume Forms on Lie Groups and Homogeneous Spaces
Homogeneously Fibered Submersions

CHAPTER XVI
Integration of Differential Forms
Sets of Measure 0
Change of Variables Formula
Orientation
The Measure Associated with a Differential Form
Homogeneous Spaces

CHAPTER XVII
Stokes Theorem
Stokes Theorem for a Rectangular Simplex
Stokes Theorem on a Manifold
Stokes Theorem with Singularities

CHAPTER XVIII
Applications of Stokes Theorem
The Maximal de Rham Cohomology
Mosers Theorem
The Divergence Theorem
The Adjoint of d for Higher Degree Forms
Cauchys Theorem
The Residue Theorem

APPENDIX
The Spectral Theorem,
Hilbert Space
Functionals and Operators
Hermitian Operators
Bibliography
Index

精彩書摘

We shall recall briefly the notion of derivative and some of its usefulproperties. As mentioned in the foreword, Chapter VIII of Dieudonn6sbook or my books on analysis [La 83], [La 93] give a self-contained andcomplete treatment for Banach spaces. We summarize certain factsconcerning their properties as topological vector spaces, and then wesummarize differential calculus. The reader can actually skip this chapterand start immediately with Chapter II if the reader is accustomed tothinking about the derivative of a map as a linear transformation. (In thefinite dimensional case, when bases have been selected, the entries in thematrix of this transformation are the partial derivatives of the map.) Wehave repeated the proofs for the more important theorems, for the ease ofthe reader.
It is convenient to use throughout the language of categories. Thenotion of category and morphism (whose definitions we recall in 1) isdesigned to abstract what is common to certain collections of objects andmaps between them. For instance, topological vector spaces and continuous linear maps, open subsets of Banach spaces and differentiablemaps, differentiable manifolds and differentiable maps, vector bundles andvector bundle maps, topological spaces and continuous maps, sets and justplain maps. In an arbitrary category, maps are called morphisms, and infact the category of differentiable manifolds is of such importance in thisbook that from Chapter II on, we use the word morphism synonymouslywith differentiable map (or p-times differentiable map, to be precise). Allother morphisms in other categories will be qualified by a prefix to in-dicate the category to which they belong.

前言/序言

  The present book aims to give a fairly comprehensive account of thefundamentals of differential manifolds and differential geometry. The sizeof the book influenced where to stop, and there would be enough materialfor a second volume (this is not a threat).
  At the most basic level, the book gives an introduction to the basicconcepts which are used in differential topology, differential geometry, anddifferential equations. In differential topology, one studies for instancehomotopy classes of maps and the possibility of finding suitable differen-tiable maps in them (immersions, embeddings, isomorphisms, etc.). Onemay also use differentiable structures on topological manifolds to deter-mine the topological structure of the manifold (for example, h ia Smale[Sin 67]). In differential geometry, one puts an additional structure on thedifferentiable manifold (a vector field, a spray, a 2-form, a Riemannianmetric, ad lib.) and studies properties connected especially with theseobjects. Formally, one may say that one studies properties invariant underthe group of differentiable automorphisms which preserve the additionalstructure. In differential equations, one studies vector fields and their in-tegral curves, singular points, stable and unstable manifolds, etc. A certainnumber of concepts are essential for all three, and are so basic and elementarythat it is worthwhile to collect them together so that more advanced expositionscan be given without having to start from the very beginnings.
  Those interested in a brief introduction could run through Chapters II,III, IV, V, VII, and most of Part III on volume forms, Stokes theorem,and integration. They may also assume all manifolds finite dimensional.

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] 下載 mobi epub pdf txt 電子書
微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

很好,書看起來不錯,送貨很快

評分

1827年,德國數學傢高斯發錶瞭《關於麯麵的一般研究》的著作,這在微分幾何的曆史上有重大的意義,它的理論奠定瞭麯麵論的基礎。高斯抓住瞭微分幾何中最重要的概念和根本性的內容,建立瞭麯麵的內蘊幾何學。其主要思想是強調瞭麯麵上隻依賴於第一基本形式的一些性質,例如麯麵上麯綫的長度、兩條麯綫的夾角、麯麵上的某一區域的麵積、測地綫、測地麯率和總麯率等等。

評分

印刷清楚,紙張質量不錯,至於內容肯定是經典,GTM的書都是經典

評分

據說很不錯的。同學幫忙推薦的

評分

很便宜,書很好

評分

還可以的呀還可以的呀

評分

   再說廣義相對論,這本書是不可多得的一本好書。當然會有些人說過於數學。我這裏隻引用W.Thirring的一句話——許多看似神秘的物理原理,結論或者現象往往是一些高等的數學結構的中的平庸的結果。這本書中關於廣義相對論的內容及時與國際上的名著比較也是難得的並極具價值的。現在國際廣義相對論的書籍情況跟國內科技書籍的行市一樣,就是初等的書一大堆,就像國內書店裏高數,綫數,概率的書塞滿書架,內容大同小異(就那麼點東西寫這麼多書,唉),真正高等點兒的書就鳳毛麟角瞭。廣義相對論的書一般來說,先寫點兒張量分析,綫性聯絡,好點兒的用坐標不依賴的觀點寫。然後介紹愛因斯坦方程,再寫點兒物理,也就是這個方程的意義(很少有人能能說清楚)以及怎麼退化到牛頓理論。好,然後再寫幾個對稱解,球對稱解討論討論黑洞,均勻各嚮同性解討論討論宇宙學,然後就完瞭。嗬嗬,國際上這樣的書也多得讓人煩瞭,這樣的書差不多誰都可以寫。真正包含一些時空的更深刻的結構和認識(比如,初值問題,因果結構與奇點定理,N-P形式,引力的辛結構,引力的規範結構,準局域能與正能定理等等,實際上場方程的發現已經快一個世紀瞭,但是廣義相對論揭示的全新的物理是人們經過瞭很長時間的努力纔逐漸瞭解的)的書就隻剩下MTW,Wald的書,Hawking & Ellis的書以及梁老師的書瞭(當然還有一些其他專著)。梁老師的書與大師們的書相比其嚴謹性也並不遜色(嚴謹的讀起來如同嚼臘,頓悟之後又倍感欣悅)。然而梁老師的更新,包含更多新的結果。這使梁老師的這本書成為一本極具價值的參考書。

評分

評分

好書,送貨較快

類似圖書 點擊查看全場最低價

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有