黎曼-芬斯勒幾何基礎

黎曼-芬斯勒幾何基礎 pdf epub mobi txt 电子书 下载 2025

莫小歡 著
圖書標籤:
  • 黎曼幾何
  • 芬斯勒幾何
  • 微分幾何
  • 幾何學
  • 數學
  • 拓撲學
  • 流形
  • 張量分析
  • 廣義相對論
  • 數學物理
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 北京大学出版社
ISBN:9787301107966
版次:1
商品编码:10557982
包装:平装
出版时间:2007-03-01
用纸:胶版纸
页数:214
字数:200000

具体描述

內容簡介

《黎曼·芬斯勒幾何基礎》是學習黎曼-芬斯勒幾何(簡稱芬斯勒幾何)的入門教材。全書共十章,作者以較大的篇幅,即前五章介紹瞭芬斯勒流形、閔可夫斯基空間(即芬斯勒流形的切空間)上的幾何量、陳聯絡,以及共變微分和第二類幾何量、黎曼幾何不變量和弧長的變分等基本知識和工具。在有瞭上述寬廣而堅實的基礎以後,論述芬斯勒幾何的核心問題,即射影球叢的幾何、三類幾何不變量的關係、具有標量麯率的芬斯勒流形、從芬斯勒流形齣發的調和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它們既是當前十分活躍的研究領域,也是作者研究成果的領域之一,含有作者獨到的見解。《黎曼·芬斯勒幾何基礎》每章內都附有一定數量的習題,書末附有習題解答和提示,便於讀者深入學習或自學。
《黎曼·芬斯勒幾何基礎》可作為綜閤性大學、師範院校數學係與物理係高年級本科生和研究生的教材或教學參考書,也可供科研院所從事數學和物理學等相關學科科研人員閱讀。

作者簡介

莫小歡,北京大學數學科學學院教授,博士生導師。 1991年在杭州大學獲得博士學位,長期從事幾何學的研究工作和教學工作,研究項目“芬斯勒流形的幾何與調和映射”獲2002年教育部提名國傢自然科學奬一等奬,負責的幾何學及其習題課程被評為2005年北京市精品課。

目錄

第一章 芬斯勒流形
§1.1 曆史迴顧
§1.2 芬斯勒流形
§1.3 基本例子
1.3.1 黎曼流形
1.3.2 閔可夫斯基流形
1.3.3 Randers流形
§1.4 基本不變量
1.4.1 基本張量
1.4.2 希爾伯特形式
§1.5 對稱芬斯勒結構
習題一

第二章 閔可夫斯基空間上的幾何量
§2.1 嘉當張量
§2.2 嘉當形式和Deicke定理
§2.3 畸變
§2.4 芬斯勒子流形
§2.5 子流形的嵌入問題
習題二

第三章 陳聯絡
§3.1 芬斯勒叢上的適當標架場
§3.2 陳聯絡的構造
§3.3 陳聯絡的性質
§3.4 SM的水平子叢和垂直子叢
習題三

第四章 共變微分和第二類幾何量
§4.1 水平共變導數和垂直共變導數
§4.2 沿著測地綫的共變導數
§4.3 Landsberg麯率
§4.4 S麯率
習題四

第五章 黎曼幾何不變量和弧長的變分
§5.1 陳聯絡的麯率
§5.2 旗麯率
§5.3 弧長的第一變分
§5.4 弧長的第二變分
習題五

第六章 射影球叢的幾何
§6.1 射影球叢的聯絡和麯率
§6.2 芬斯勒叢的可積條件
§6.3 芬斯勒叢的極小性
習題六

第七章 三類幾何不變量的內蘊聯係
§7.1 嘉當張量和旗麯率的關係
§7.2 裏奇恒等式
§7.3 S麯率和旗麯率的關係
§7.4 具有常S麯率的芬斯勒流形
習題七

第八章 具有標量麯率的芬斯勒流形
§8.1 具有迷嚮S麯率的芬斯勒流形
§8.2 具有標量麯率的芬斯勒流形的基本方程
§8.3 具有相對迷嚮平均Landsberg麯率的度量
習題八

第九章 從芬斯勒流形齣發的調和映射

第十章 局部射影平坦和非局部射影平坦的芬斯勒度量
習題解答和提示
參考文獻
索引

前言/序言







用户评价

评分

好书

评分

应该还不错应该还不错

评分

数据专业工具书,刚开始学习,感觉还可以。

评分

应该还不错应该还不错

评分

《黎曼·芬斯勒几何基础》可作为综合性大学、师范院校数学系与物理黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。《黎曼·芬斯勒几何基础》每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。

评分

《黎曼·芬斯勒几何基础》可作为综合性大学、师范院校数学系与物理黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。《黎曼·芬斯勒几何基础》每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。

评分

  由于Chern在做1948年的工作时,Cartan的活动标架法并不通行,尤其是对于无知的Finsler几何学家,这些人只能在偏僻之处做点小工作,甚至对于正在呼风唤雨的Chern-Weil理论都一无所知,所以Chern的这篇文章长期以来并不被人了解。Rund在1961年重新发现了Chern定义过的联络,由于Rund的无知,这个用矢量场来定义的联络和Chern的联络的等价性并未被发现。在Anastasiei 1996年的一篇注记中,这种等价性首先被揭示出来,现在这种联络叫作Chern-Rund联络。尽管Chern首先发现了它,这个叫法是有好处的,因为可以和复几何上的Chern联络相区分。在这本书里这种联络依然被称为Chern联络,我想这源于其他两个作者的无知。

评分

买来收藏之用。,书一般般吧。

评分

好书

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有