內容簡介
convexity has been increasingly important in recent years in the study of extremum problems in many areas of applied mathematics. the purpose of this book is to provide an exposition of the theory of convex sets and functions in which applications to extremum problems play the central role.
systems of inequalities, the minimum or maximum of a convex function over a convex set, lagrange multipliers, and minimax theorems are among the topics treated, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle-functions. duality is emphasized throughout, particularly in the form of fenchers conjugacy correspondence for convex functions.
內頁插圖
目錄
Preface .
Introductory Remarks: a Guide for the Reader
PART l: BASIC CONCEPTS
1. Affine Sets
2. Convex Sets and Cones
3. The Algebra of Convex Sets
4. Convex Functions
5. Functional Operations
PART II: TOPOLOGICAL PROPERTIES
6. Relative Interiors of Convex Sels
7. Closures of Convex Functions
8. Recession Cones and Unboundedness
9. Some CIosedness Criteria
10. Continuity of Convex Functions
PART Ⅲ: DUALITY CORRESPONDENCES
11. Separation Theorems
12. Conjugates of Convex Functions
13. Support Furctions
14. Polars of Convex Sets
15. Polars of Convex Functions
16.Dual Operations
PART IV: REPRESENTATION AND INEQUALITIES
17. Carath6odorys Theorem
18. Extreme Points and Faces of Convex Sets
19. Polyhedral Convex Sets and Functions
20. Some Applications of Polyhedral Convexity
21.Hellys Theorem and Systems of Inequalities
22. Linear Inequalities
CONTENTS
PART V: DIFFERENTIAL THEORY
23. Directional Derivatives and Subgradients
24. Differential Continuity and Monotonicity
25. Differentiability of Convex Functions
26. The Legendre Transformation
PART VI: CONSTRAINED EXTREMUM PROBLEMS
27. The Minimum of a Convex Function
28. Ordinary Convex Programs and Lagrange Multipliers
29. Bifunctions and Generalized Convex Programs
30. Adjoint Bifunctions and Dual Programs
31. Fenchels Duality Theorem
32. The Maximum of a Convex Function
PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY
33. Saddle-Functions
34. Closures and Equivalence Classes
35. Continuity and Differentiability of Saddle-functions
36. Minimax Problems
37. Conjugate Saddle-functions and Minimax Theorems
PART VIII: CONVEX ALGEBRA
38. The Algebra of Bifunctions
39. Convex Processes .
Comments and References
Bibliography
Index
前言/序言
凸分析(英文版) [Convex Analysis] 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
京東上的東西我覺得非常好,我的所有東西都在京東上麵買的,送貨速度非常快,買瞭東西就知道什麼時候來,我在京東買東西好多年瞭,京東的東西都是正品,售後服務特彆好,我太喜歡瞭!這次買的東西還是一如繼往的好,買瞭我就迫不及待的打開,確實很不錯,我真是太喜歡瞭。在京東消費很多,都成鑽石會員瞭,哈哈,以後還會買,所有的東西都在京東買,京東商城是生活首選!
評分
☆☆☆☆☆
管理學科的必讀書,考上博士用
評分
☆☆☆☆☆
大牛的作品!非常給力!就是排版稍差
評分
☆☆☆☆☆
評分
☆☆☆☆☆
為什麼思維中要對客觀對象進行分析呢?我們知道,自然界中的任何事物都不是單純的和不可分的,而是具有復雜的構成。它們總是由不同的部分、方麵、因素和層次組成的。果核可以剖開,化閤物可以分解,所謂“元素”、“原子”和“基本粒子”也都不是單純的,都有其一定的結構。客觀事物構成的復雜性決定著思維分析的必要性。沒有分摺,人們對事物隻能有個渾沌的認識。
評分
☆☆☆☆☆
大牛著作,純屬膜拜。
評分
☆☆☆☆☆
書的印刷質量很差,比盜版還不如。
評分
☆☆☆☆☆
為什麼思維中要對客觀對象進行分析呢?我們知道,自然界中的任何事物都不是單純的和不可分的,而是具有復雜的構成。它們總是由不同的部分、方麵、因素和層次組成的。果核可以剖開,化閤物可以分解,所謂“元素”、“原子”和“基本粒子”也都不是單純的,都有其一定的結構。客觀事物構成的復雜性決定著思維分析的必要性。沒有分摺,人們對事物隻能有個渾沌的認識。
評分
☆☆☆☆☆
我為什麼喜歡在京東買東西,因為今天買明天就可以送到。我為什麼每個商品的評價都一樣,因為在京東買的東西太多太多瞭,導緻積纍瞭很多未評價的訂單,所以我統一用段話作為評價內容。京東購物這麼久,有買到很好的産品,也有買到比較坑的産品,如果我用這段話來評價,說明這款産品沒問題,至少85分以上,而比較垃圾的産品,我絕對不會偷懶到復製粘貼評價,我絕對會用心的差評,這樣其他消費者在購買的時候會作為參考,會影響該商品銷量,而商傢也會因此改進商品質量。