編輯推薦
本係列叢書搜集的是世界各國各曆史時期的初等數學經典。大多兼有數學教育史史料研究及彌補當前初等數學教材不係統、缺深度、少背景介紹等缺陷之功能。馮剋勤所著的《平方和》為其中一冊,共分四章及附錄:《數論經典著作係列:平方和》介紹有關代數數論的幾段很不簡單的數學史,以及數學思想和解題方法。
內容簡介
《平方和》共分四章及附錄:第一章整數平方和——能錶示嗎?第二章再談整數平方和——有多少種錶示法?第三章-1是平方和嗎?第四章多項式平方和。《平方和》適閤於高等院校師生及相關專業研究人員、數學奧林匹剋競賽選手和教練員以及數學愛好者。
作者簡介
馮剋勤,1941年生,1968年研究生畢業於中國科學技術大學數學係;1973年至2000年在中國科學技術大學數學係和研究生院任教,2000年後到清華大學數學係工作。
主要從事代數數論和代數編碼理論研究,齣版瞭《分圓函數域》、《代數數論簡史》等專著,《整數與多項式》、《交換代數基礎》、《代數數論》、《代數與通信》等大學生和研究生教材:主編的《走嚮數學》叢書曾獲中國圖書奬。
目錄
第一章 整數平方和——能錶示嗎?
1.1 二平方和——高斯定理
1.2 四平方和——兼談域和四元數體
1.3 二元二次型
1.4 三平方和
第二章 再談整數平方和——有多少種錶示法?
2.1 θ,q0,q1,q2和q3
2.2 雅可比恒等式
2.3 r2(n)計算公式
2.4 r4(n)計算公式
2.5 再證r2(n)公式——兼談高斯整數環
幕間休息——漫談代數數論
第三章 -1是平方和嗎?
3.1 -1就是一切
3.2 全正元素是平方和
3.3 -1是幾個數的平方和——虛二次域情形
3.4 s(F)=2n(費斯特定理)
第四章 多項式平方和
4.1 曆史的迴顧
4.2 多項式平方和——肯定性和否定性結果
4.3 構作s(F)=2k的域
4.4 進一步的結果和未解決的問題
附錄 一點初等數論
編輯手記
前言/序言
平方和 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
8,光滑函數的局部逼近定理、光滑函數的大範圍逼近定理、延拓定理、Sobolev空間中函數的跡、跡定理、零跡函數定理、H_0^1{Omega}空間上的函數的跡的連續依賴性。Gagliardo-Nirenberg—Sobolev 不等式。
評分
☆☆☆☆☆
12,將Sturm-Liouville問題歸結為積分算子本徵函數問題、雙麯方程混閤問題解的存在性、Laplace方程第一邊值問題的Green函數、Green函數的對稱性、Poisson公式、Harnack不等式。
評分
☆☆☆☆☆
2,導數的先驗估計、調和函數的解析性、解析延拓定理、Liouville定理、Phragmen-Lindelof定理。
評分
☆☆☆☆☆
2,導數的先驗估計、調和函數的解析性、解析延拓定理、Liouville定理、Phragmen-Lindelof定理。
評分
☆☆☆☆☆
8,Lebesgue可積函數空間的完備性、Lebesgue控製收斂定理、Levi單調收斂定理、Fatou定理、可積性的判據。
評分
☆☆☆☆☆
2,Cauchy問題、Cauchy-Kovalevskaya定理、強函數、Cauchy-Kovalevskaya定理的證明、廣義Cauchy問題。
評分
☆☆☆☆☆
11,Holder與Minkowski不等式、L^p空間、Lp空間的完備性、L^p空間上的逼近。
評分
☆☆☆☆☆
比較便宜,還行。。。。
評分
☆☆☆☆☆