內容簡介
As with the first, the second volume contains substantially more material than can be covered in a one-semester course. Such courses may omit many beautiful and well-grounded applications which connect broadly to many areas of mathematics.We of course hope that students will pursue this material independently; teachers may find it useful for undergraduate seminars.
目錄
Foreword
Chapter Ⅵ Integral calculus in one variable
1 Jump continuous functions
Staircase and jump continuous functions
A characterization of jump continuous functions
The Banach space of jump continuous functions
2 Continuous extensions
The extension of uniformly continuous functions
Bounded linear operators
The continuous extension of bounded linear operators
3 The Cauchy-Riemann Integral
The integral of staircase functions
The integral of jump continuous functions
Riemann sums
4 Properties of integrals
Integration of sequences of functions
The oriented integral
Positivity and monotony of integrals
Componentwise integration
The first fundamental theorem of calculus
The indefinite integral
The mean value theorem for integrals
5 The technique of integration
Variable substitution
Integration by parts
The integrals of rational functions
6 Sums and integrals
The Bernoulli numbers
Recursion formulas
The Bernoulli polynomials
The Euler-Maclaurin sum formula
Power sums
Asymptotic equivalence
The Biemann ζ function
The trapezoid rule
7 Fourier series
The L2 scalar product
Approximating in the quadratic mean
Orthonormal systems
Integrating periodic functions
Fourier coefficients
Classical Fourier series
Bessel's inequality
Complete orthonormal systems
Piecewise continuously differentiable functions
Uniform convergence
8 Improper integrals
Admissible functions
Improper integrals
The integral comparison test for series
Absolutely convergent integrals
The majorant criterion
9 The gamma function
Euler's integral representation
The gamma function on C(-N)
Gauss's representation formula
The reflection formula
The logarithmic convexity of the gamma function
Stirling's formula
The Euler beta integral
Chapter Ⅶ Multivariable differential calculus
1 Continuous linear maps
The completeness of/L(E, F)
Finite-dimensional Banach spaces
Matrix representations
The exponential map
Linear differential equations
Gronwall's lemma
The variation of constants formula
Determinants and eigenvalues
Fundamental matrices
Second order linear differential equations
Differentiability
The definition
The derivative
Directional derivatives
Partial derivatives
The Jacobi matrix
A differentiability criterion
The Riesz representation theorem
The gradient
Complex differentiability
Multivariable differentiation rules
Linearity
The chain rule
The product rule
The mean value theorem
The differentiability of limits of sequences of functions
Necessary condition for local extrema
Multilinear maps
Continuous multilinear maps
The canonical isomorphism
Symmetric multilinear maps
The derivative of multilinear maps
Higher derivatives
Definitions
Higher order partial derivatives
The chain rule
Taylor's formula
Functions of m variables
Sufficient criterion for local extrema
6 Nemytskii operators and the calculus of variations
Nemytskii operators
The continuity of Nemytskii operators
The differentiability of Nemytskii operators
The differentiability of parameter-dependent integrals
Variational problems
The Euler-Lagrange equation
Classical mechanics
7 Inverse maps
The derivative of the inverse of linear maps
The inverse function theorem
Diffeomorphisms
The solvability of nonlinear systems of equations
8 Implicit functions
Differentiable maps on product spaces
The implicit function theorem
Regular values
Ordinary differential equations
Separation of variables
Lipschitz continuity and uniqueness
The Picard-Lindelof theorem
9 Manifolds
Submanifolds of Rn
Graphs
The regular value theorem
The immersion theorem
Embeddings
Local charts and parametrizations
Change of charts
10 Tangents and normals
The tangential in Rn
The tangential space
Characterization of the tangential space
Differentiable maps
The differential and the gradient
Normals
Constrained extrema
Applications of Lagrange multipliers
Chapter Ⅷ Line integrals
1 Curves and their lengths
The total variation
Rectifiable paths
Differentiable curves
Rectifiable curves
2 Curves in Rn
Unit tangent vectors
Paramctrization by arc length
Oriented bases
The Frenet n-frame
Curvature of plane curves
Identifying lines and circles
Instantaneous circles along curves
The vector product
The curvature and torsion of space curves
3 Pfaff forms
Vector fields and Pfaff forms
The canonical basis
Exact forms and gradient fields
The Poincare lemma
Dual operators
Transformation rules
Modules
4 Line integrals
The definition
Elementary properties
The fundamental theorem of line integrals
Simply connected sets
The homotopy invariance of line integrals
5 Holomorphic functions
Complex line integrals
Holomorphism
The Cauchy integral theorem
The orientation of circles
The Cauchy integral formula
Analytic functions
Liouville's theorem
The Fresnel integral
The maximum principle
Harmonic functions
Goursat's theorem
The Weierstrass convergence theorem
6 Meromorphie functions
The Laurent expansion
Removable singularities
Isolated singularities
Simple poles
The winding number
The continuity of the winding number
The generalized Cauchy integral theorem
The residue theorem
Fourier integrals
References
Index
前言/序言
分析(第2捲) 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
總的來說,它們的證明簡潔和邏輯但需要一些耐心跟隨。當做齣一個論點,作者經常引用前題一個b。c和定理x y。沒有顯式地聲明校長z,他們正在使用,即使它可能有一個名字。因此,作為一個讀者,你要麼必須願意遵循麵包屑他們提供或確保你明白為什麼他們的論證工作。這真的不是一個批評,隻是一個觀察。因為這個原因雖然,如果你打算買捲的工作,您N必須買捲N - 1。在每一捲,作者承認的序言中,他們的是太多的材料覆蓋在一個學期;事實上,至少有足夠的材料在每個捲為一個學年工作的價值。
評分
☆☆☆☆☆
書中有些證明需要構造算子或代數結構,但由於書中沒有給齣wff的相關邏輯規則,實際上,這些算子和代數結構不應該要求讀者去構造。因為這本書並沒有告訴讀者如何去檢驗自己的構造是否閤理。
評分
☆☆☆☆☆
書中有些證明需要構造算子或代數結構,但由於書中沒有給齣wff的相關邏輯規則,實際上,這些算子和代數結構不應該要求讀者去構造。因為這本書並沒有告訴讀者如何去檢驗自己的構造是否閤理。
評分
☆☆☆☆☆
開筆此書前,我曾列過一個寫作計劃。按人名順序一個接一個去羅列—他們都是些浪蕩江湖,和我的人生軌跡曾交叉重疊的老友們。 當時,我坐在一輛咣當咣當的綠皮火車裏,天色微亮,周遭是不同省份的呼嚕聲。我找瞭個本子,塞著耳機一邊聽歌一邊寫……活著的、死瞭的、不知不覺寫滿瞭七八頁紙。我嚇瞭一跳,怎麼這麼多的素材?不過十年,故事卻多得堆積如山,這哪裏是一本書能夠寫的完的。 頭有點兒大,不知該如何取捨,於是索性隨手圈瞭幾個老友的人名。反正寫誰都是寫,就像一大串美味的葡萄,隨手摘下的,都是一粒粒飽滿的甜。隨手圈下的名單,是為此書篇章構成之由來。圈完後一抬頭,車窗外沒有起伏,亦沒有喬木,已是一馬平川的華北平原。 書的創作過程中,我慢慢梳理齣瞭一些東西,隱約發現自己將推展開的世界,於已經習慣瞭單一幸福感獲取途徑的人們而言,那是另一種幸福感。 那是一些值得我們去認可、尋覓的幸福感。他們或許是陌生的,但發著光。在我的認知中,一個成熟健全的當代文明社會,理應尊重多元的個體價值觀,理應尊重個體幸福感獲得方式。這種尊重,應該建立在瞭解的基礎之上,鑒於國人文化傳統裏對陌生事物的天然抵觸因子,“如何去瞭解”這幾個字愈發重要。 那麼,親愛的們,我該如何去讓你瞭解那些多元而又陌生的幸福感呢? 寫書時,恰逢山東大學抬愛,讓我有緣受聘於山東大學儒學高等研究院,於是趁機做瞭一場名為《亞文化下成長方式的田野調查》的報告講座。 那天會場塞滿瞭人,場麵齣乎意料的火爆,來的大都是85 後和90後。我講的就是這份名單:大軍、路平、月月、白瑪央宗……我和他們的共同生活就是一場田野調查。我沒用太學術的語言詞匯去貫穿講座,但講瞭許多細節的故事, 那天的敘述方式,是為本書行文的基調。 卡爾維諾說:“要把地麵上的人看清楚,就要和地麵保持距離”。這句話給我帶來一個意像:一個穿西服打領帶的人,手足並用爬在樹上,和大部分同類保持著恰當的距離。他晃蕩著腿,騎在自我設定的叛逆裏,心無掛礙,樂在其中。偶爾低頭看看周遭過客,偶爾抬頭,漫天星鬥。 我期待齣到第十本書的時候,也能爬上這樣一棵樹。 當下是我第一本書,芹獻諸君後,若價值觀和您不重疊、行文有不得人心處,請姑念初犯…… 我下次不會改的。 等我爬上樹瞭再說。 我不敢說這本書寫得有多好多好,也懶得妄自菲薄,隻知過程中三易其稿,惹得責編戴剋莎小姐幾度差點兒忿極而泣。如此這般摺騰,僅為本色二字:講故事人的本色,故事中人們的本色。 或許,打磨齣本色的過程,也是爬樹的過程吧。 文至筆端心意淺,話到唇畔易虛言,且灑蓮實二三子,自有方傢識真顔。 這本書完稿後,我背起吉他,從北到南,用一個月的時間挨個去探望瞭書中的老友們,除瞭那個不用手機的女孩,其他的人我幾乎見瞭一個遍。
評分
☆☆☆☆☆
導數不齣現,直到301頁,但當它介紹,它定義在條款的這東西到底是什麼:一個綫性近似。在大多數文本,這個觀點並不是討論直到“多元”分析覆蓋。
評分
☆☆☆☆☆
這套書給人的感覺有點不上不下。具體來說,作者(基本上是)打算避開集閤論公理和數理邏輯,但又花瞭十幾頁的功夫去描述這兩個東西,而且還是在避免使用符號語言的情況下,使用自然語言來說明的.......嘛,因為原文是德文,說明上應該會比這英譯本的要嚴格一些,但是這英譯本就......舉個例子來講,英譯本中一會兒用英語“and”來錶示邏輯符號裏的"AND",一會兒又用“and”來錶示邏輯符號裏的"INCLUSIVE OR"。都無語瞭......
評分
☆☆☆☆☆
構造函數p^2-2,然後麯綫較好的切x軸的值值更靠近根號2 ,下麵因該是p+p但是為瞭2式且不違提設可以任意取值,這個算是有跡可循的… 後麵1.21構造齣來式子纔是天馬行空數學就是這樣子,想想那些世界級的數學難題,消耗幾代人幾十年幾百年的生命去計算思考那些復雜的數學題,就顯得微不足道瞭,數學-人類精神虐待! 大傢幫我看下那道數學題怎麼做其實我建議不要刷吉米,找一本卓裏奇或者魯丁,如果覺得這些難,找一本科大版的數分都可以,個人覺得還是要有一點數學品味的吉米的很多題還是可以,我主要是想練下多偏計算的。科大的數分我看瞭一下,更難,謝謝你的建議。都差不多吧。另外,劉玉漣的鋪墊解說比較多,使初學者不感到突兀;張築生的簡潔清晰,把其他人書裏的某些分開的東西融為一體,又把某些東西拆開講,先體係後細節。因為本人理解能力並不是很強。。所以想找一本比較簡單的。。不知是華師大版的數分比較簡單呢,還是陳紀修版的簡單,或者有更好的推薦嘛?
評分
☆☆☆☆☆
書中有些證明需要構造算子或代數結構,但由於書中沒有給齣wff的相關邏輯規則,實際上,這些算子和代數結構不應該要求讀者去構造。因為這本書並沒有告訴讀者如何去檢驗自己的構造是否閤理。
評分
☆☆☆☆☆
這套書給人的感覺有點不上不下。具體來說,作者(基本上是)打算避開集閤論公理和數理邏輯,但又花瞭十幾頁的功夫去描述這兩個東西,而且還是在避免使用符號語言的情況下,使用自然語言來說明的.......嘛,因為原文是德文,說明上應該會比這英譯本的要嚴格一些,但是這英譯本就......舉個例子來講,英譯本中一會兒用英語“and”來錶示邏輯符號裏的"AND",一會兒又用“and”來錶示邏輯符號裏的"INCLUSIVE OR"。都無語瞭......