孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 電子書 下載 2024

圖書介紹


孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons]


L.D.法捷耶夫(Ludwig D.Faddeev) 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-12-24

類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510058264
版次:1
商品編碼:11321055
包裝:平裝
外文名稱:Hamiltonian Methods in the Theory of Solitons
開本:24開
齣版時間:2013-03-01
用紙:膠版紙
頁數:592
正文語種:英文

孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 電子書 下載 2024



具體描述

內容簡介

  The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiitonian formalism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scattering method in its most elegant form. Moreover, the Hamiltonian formalism provides a link between classical and quantum mechanics. So the book is not only an introduction to the classical soliton theory but also the groundwork for the quantum theory of solitons, to be discussed in another volume.
  The book is addressed to specialists in mathematical physics. This has determined the choice of material and the level of mathematical rigour. We hope that it will also be of interest to mathematicians of other specialities and to theoretical physicists as well. Still, being a mathematical treatise it does not contain applications of soliton theory to specific physical phenomena.

內頁插圖

目錄

Introduction References
Part One The Nonlinear Schrodinger Equation (NS Model)
Chapter Ⅰ Zero Curvature Representation
1.Formulation of the NS Model
2.Zero Curvature Condition
3.Properties of the Monodromy Matrix in the Quasi-Periodic Case
4.Local Integrals of the Motion
5.The Monodromy Matrix in the Rapidly Decreasing Case
6.Analytic Properties of Transition Coefficients
7.The Dynamics of Transition Coefficients
8.The Case of Finite Density.Jost Solutions
9.The Case of Finite Density.Transition Coefficients
10.The Case of Finite Density.Time Dynamics and Integrals of the Motion
1.Notes and References
References
Chapter Ⅱ The Riemann Problem
1.The Rapidly Decreasing Case.Formulation of the Riemann Problem
2.The Rapidly Decreasing Case.Analysis of the Riemann Problem
3.Application of the Inverse Scattering Problem to the NS Model
4.Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation
5.The Rapidly Decreasing Case.Soliton Solutions
6.Solution of the Inverse Problem in the Case of Finite Density.The Riemann Problem Method
7.Solution of the Inverse Problem in the Case of Finite Density.The Gelfand-Levitan-Marchenko Formulation
8.Soliton Solutions in the Case of Finite Density
9.Notes and References References
Chapter Ⅲ The Hamiltonian Formulation
1.Fundamental Poisson Brackets and the /"-Matrix
2.Poisson Commutativity of the Motion Integrals in the Quasi-Periodic Case
3.Derivation of the Zero Curvature Representation from the Fundamental Poisson Brackets
4.Integrals of the Motion in the Rapidly Decreasing Case and in the Case of Finite Density
5.The A-Operator and a Hierarchy of Poisson Structures
6.Poisson Brackets of Transition Coefficients in the Rapidly Decreasing Case
7.Action-Angle Variables in the Rapidly Decreasing Case
8.Soliton Dynamics from the Hamiltonian Point of View
9.Complete Integrability in the Case of Finite Density
10.Notes and References
References

Part Two General Theory of Integrable Evolution Equations
Chapter Ⅰ Basic Examples and Their General Properties
1.Formulation of the Basic Continuous Models
2.Examples of Lattice Models
3.Zero Curvature Representation's a Method for Constructing Integrable Equations
4.Gauge Equivalence of the NS Model (#=-1) and the HM Model
5.Hamiltonian Formulation of the Chiral Field Equations and Related Models
6.The Riemann Problem as a Method for Constructing Solutions of Integrable Equations
7.A Scheme for Constructing the General Solution of the Zero Curvature Equation. Concluding Remarks on Integrable Equations
8.Notes and References
References
Chapter Ⅱ Fundamental Continuous Models
1.The Auxiliary Linear Problem for the HM Model
2.The Inverse Problem for the HM Model
3.Hamiltonian Formulation of the HM Model 4.The Auxiliary Linear Problem for the SG Model
5.The Inverse Problem for the SG Model
6.Hamiltonian Formulation of the SG Model
Chapter Ⅲ Fundamental Models on the Lattice
Chapter Ⅳ Lie-Algebraic Approach to the Classification and Analysis of Integrable Models Conclusion List of Symbols Index
……
Conclusion
List of Symbols
Index

前言/序言



孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] 下載 mobi epub pdf txt 電子書
孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

類似圖書 點擊查看全場最低價

孤立子理論中的哈密頓方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有