超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] pdf epub mobi txt 電子書 下載 2024

圖書介紹


超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed]


加來道雄 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-11-21

類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510005701
版次:2
商品編碼:10256967
包裝:平裝
叢書名: 物理學經典教材(影印版)
外文名稱:Introduction to Superstrings and M-Theory 2nd ed
開本:24開
齣版時間:2010-04-01
頁數:587
正文語種:英語

超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] pdf epub mobi txt 電子書 下載 2024



具體描述

內容簡介

   超弦和M理論是現代物理學中有趣活躍的研究課題之一。該問題比較睏難同時也充滿爭議,一些人稱之為“理論”,這是因為超弦理論有可能解決睏擾人們多年的難題,即統一二十世紀偉大的兩個理論:廣義相對論和量子場論。《超弦和M理論導論(第2版)》全麵細緻地講解超弦理論和該領域的新研究進展,內容包括四維超弦,Kac-Moody代數,Teichmuller空間和Calabi-Yau流形,M理論和D膜,對偶和BPS關係,矩陣模型等,可以作為研究生教材,同時對研究人員也有參考價值。作者首先簡要介紹瞭點粒子理論,然後利用費曼路徑積分詳細討論超弦理論。超弦研究需要很多數學工具,書中分彆作瞭介紹,如指標定理,同調論和Kahler流形等。在第二版中,作者對內容做瞭整體修訂,並添加瞭M理論的三個新章節。閱讀《超弦和M理論導論(第2版)》需要量子力學和相對論的基本知識。
讀者對象:理論物理、高能物理、場論和弦論等專業的高年級本科生、研究生和相關專業的科研人員。

作者簡介

作者:(美國)加來道雄

內頁插圖

目錄

Preface
Acknowledgments
Ⅰ First Quantization and Path Integrals
1 Path Integrals and Point Particles
1.1 Why Strings?
1.2 Historical Review of Gauge Theory
1.3 Path Integrals and Point Particles
1.4 Relativistic Point Particles
1.5 First and Second Quantization
1.6 Faddeev-Popov Quantization
1.7 Second Quantization
1.8 Harmonic Oscillators
1.9 Currents and Second Quantization
1.10 Summary
References

2 Nambu-Goto Strings
2.1 Bosonic Strings
2.2 Gupta-Bleuler Quantization
2.3 Light Cone Quantization
2.4 BRST Quantization
2.5 Trees
2.6 From Path Integrals to Operators
2.7 Projective Invariance and Twists
2.8 Closed Strings
2.9 Ghost Elimination
2.100 Summary
References

3 Superstrings
3.1 Supersymmetric Point Particles
3.2 Two-Dimensional Supersymmetry
3.3 Trees
3.4 Local Two-Dimensional Supersymmetry
3.5 Quantization
3.6 GSO Projection
3.7 Superstrings
3.8 Light Cone Quantization of the GS Action
3.9 Vertices and Trees
3.10 Summary
References

4 Conformal Field Theory and Kac——Moody Algebras
4.1 Conformal Field Theory
4.2 Superconformal Field Theory
4.3 Spin Fields
4.4 Superconformal Ghosts
4.5 Fermion Vertex
4.6 Spinors and Trees
4.7 Kac-Moody Algebras
4.8 Supersymmetry
4.9 Summary
References

5 Mulfiloops and Teichmuller Spaces
5.1 Unitarity
5.2 Single-Loop Amplitude
5.3 Harmonic Oscillators
5.4 Single-Loop Superstring Amplitudes
5.5 Closed Loops
5.6 Multiloop Amplitudes
5.7 Riemann Surfaces and Teichmiiller Spaces
5.8 Conformal Anomaly
5.9 Superstrings
5.10 Determinants and Singularities
5.11 Moduli Space and Grassmannians
5.12 Summary
References
Ⅱ Second Quantization and the Search for Geometry

6 Light Cone Field Theory
6.1 Why String Field Theory?
6.2 Deriving Point Particle Field Theory
6.3 Light Cone Field Theory
6.4 Interactions
6.5 Neumann Function Method
6.6 Equivalence of the Scattering Amplitudes
6.7 Four-String Interaction
6.8 Superstring Field Theory
6.9 Summary
References

7 BRST Field Theory
7.1 Covariant String Field Theory
7.2 BRST Field Theory
7.3 Gauge Fixing
7.4 Interactions
7.5 Witten's String Field Theory
7.6 Proof of Equivalence
7.7 Closed Strings and Superstrings
7.8 Summary
References
Ⅲ Phenomenology and Model Building

8 Anomalies and the Atiyah-Singer Theorem
8.1 Beyond GUT Phenomenology
8.2 Anomalies and Feynman Diagrams
8.3 Anomalies in the Functional Formalism
8.4 Anomalies and Characteristic Classes
8.5 Dirac Index
8.6 Gravitational and Gauge Anomalies
8.7 Anomaly Cancellation in Strings
8.8 Summary
References

9 Heterotic Strings and Compactification
9.1 Compactification
9.2 The Heterotic String
9.3 Spectrum
9.4 Covariant and Fermionic Formulations
9.5 Trees
9.6 Single-Loop Amplitude
9.7 Es and Kac——Moody Algebras
9.8 Lorentzian Lattices
9.9 Summary
References

10 Calabi——Yau Spaces and Orbifolds
10.1 Calabi-Yau Spaces
10.2 Review of de Rahm Cohomology
10.3 Cohomology and Homology
10.4 K/ihler Manifolds
10.5 Embedding the Spin Connection
10.6 Fermion Generations
10.7 Wilson Lines
10.8 Orbifoids
10.9 Four-Dimensional Superstrings
10.10 Summary
References
Ⅳ M-Theory

11 M-Theory and Duality
11.1 Introduction
11.2 Duality in Physics
11.3 Why Five String Theories?
11.4 T-Duality
11.5 S-Duality
11.5.1 Type IIA Theory
11.5.2 Type IIB Theory
11.5.3 M-Theory and Type IIB Theory
11.5.4 E8 E8 Heterotic String
11.5.5 Type I Strings
11.6 Summary
References

12 Compactifications and BPS States
12.1 BPS States
12.2 Supersymmetry and P-Branes
12.3 Compactification
12.4 Example: D = 6
12.4.1 D = 6, N = (2, 2) Theory
12.4.2 D = 6, N = (1, 1) Theories
12.4.3 M-Theory in D = 7
12.5 Example:D=4, N=2 and D=6, N=1
12.6 Symmetry Enhancement and Tensionless Strings
12.7 F-Theory
12.8 Example: D = 4
12.9 Summary
References

13 Solitons, D-Branes, and Black Holes
13.1 Solitons
13.2 Supermembrane Actions
13.3 Five-Brahe Action
13.4 D-Branes
13.5 D-Brane Actions
13.6 M(atrix) Models and Membranes
13.7 Black Holes
13.8 Summary
13.9 Conclusion
References
Appendix
A.1 A Brief Introduction to Group Theory
A.2 A Brief Introduction to General Relativity
A.3 A Brief Introduction to the Theory of Forms
A.4 A Brief Introduction to Supersymmetry
A.5 A Brief Introduction to Supergravity
A.6 Notation
References
Index

精彩書摘

(1) Because we are dealing with a first quantized theory, we have to take the sum over all interacting topologies that are swept out by the string. For the Nambu——Goto string, the precise nature of these topologies is ambiguous and must be specified by hand. However, for the Polyakov form of the action, which contains an independent metric tensor, we can eliminate most of this ambiguity by specifying that we sum over all conformally and modular in equivalent configurations. (These terms will be defined later.) This will become a powerful constraint once we start to derive loops and will determine the function measure uniquely. The measure and the topologies in the Nambu-Goto action, however, are not well defined. (We must point out, however, that this rule of integrating over in equivalent surfaces does not automatically satisfy unitarity. This still must be checked by hand.)
(2) The gauge fixing of weyl invariance for the Polyakov action, although trivial classically, poses problems when we make the transition to quantum mechanics. An anomaly appears when we carefully begin the quantization process. In fact, this conformal anomaly will disappear only in 26
dimensions.

前言/序言

  Superstring theory (and its latest formulation, M-theory) has emerged as the most promising candidate for a quantum theory of all known interactions. Superstrings apparently solve a problem that has defied solution for the past50 years, namely the unification of the two great fundamental physical theories of the century, quantum field theory and general relativity. Superstring theory introduces an entirely new physical picture into theoretical physics and a new mathematics that has startled even the mathematicians.
  Ironically, although superstring theory is supposed to provide a unified field theory of the Universe, the theory itself often seems like a confused jumble of folklore, random rules of thumb, and intuitions. This is because the development of superstring theory has been unlike that of any other theory, such as general relativity, which began with a geometry and an action and later evolved into a quantum theory. Superstring theory, by contrast, has been evolving backward for the past 30 years. It has a bizarre history, beginning with the purely accidental discovery of the quantum theory in 1968 by G. Veneziano and M. Suzuki.
  Thumbing through old mathematics books, they stumbled by chance on the Beta function, written down in the last century by mathematician Leon hard Euler. To their amazement, they discovered that the Beta function satisfied almost all the stringent requireme 超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] 下載 mobi epub pdf txt 電子書
超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

總的來說非常難得。雖然是英文,我英文很爛,為瞭看這書我決定刻苦學英文。

評分

書還不錯,包裝有點簡單瞭。下次會再來

評分

很好,很快,京東真的很不錯,繼續支持

評分

數的價格還行,質量可以接受,隻是這書現在讀起來對我來說太難瞭,非專業人員不建議購買

評分

很專業,英語的,需要慢慢看。

評分

非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!非常好!

評分

值得推薦的書,很不錯,推薦

評分

滿意

評分

物理學追求的最高目標是物質的統一和力的統一。被稱為“萬物之理”的弦/M理論是目前公認的理想候選者,是世界物質科學研究的最前沿。

類似圖書 點擊查看全場最低價

超弦和M理論導論(第2版) [Introduction to Superstrings and M-Theory 2nd ed] pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有