莫爾斯理論入門 [An Invitation to Morse Theory]

莫爾斯理論入門 [An Invitation to Morse Theory] pdf epub mobi txt 电子书 下载 2025

[美] 尼古萊斯庫 著
圖書標籤:
  • 莫爾斯理論
  • 拓撲學
  • 微分幾何
  • 數學
  • 高等數學
  • 邀請
  • 入門
  • 流形
  • 臨界點
  • 同調理論
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510027291
版次:1
商品编码:10762448
包装:平装
外文名称:An Invitation to Morse Theory
开本:24开
出版时间:2010-09-01
用纸:胶版纸
页数:241
正文语种:英文

具体描述

內容簡介

As the the title suggests, the goal of this book is to give the reader a taste of the “unreasonable effectiveness” of Morse theory. The main idea behind thistechnique can be easily visualized.
Suppose M is a smooth, compact manifold, which for simplicity we as-sume is embedded in a Euclidean space E. We would like to understand basictopological invariants of M such as its homology, and we attempt a “slicing” technique.

目錄

Preface
Notations and conventions
1 Morse Functions
1.1 The Local Structure of Morse Functions
1.2 Existence of Morse Functions

2 The Topology of Morse Functions
2.1 Surgery,Handle Attachment.and Cobordisms
2.2 The Topology of Sublevel Sets
2.3 Morse Inequalities
2.4 Morse-Smale Dynamics
2.5 Morse-Floer Homology
2.6 Morse-Bott Functions
2.7 Min-Max Theory

3 Applications
3.1 The Cohomology of Complex Grassmannians
3.2 Lefschetz Hyperplane Theorem
3.3 Symplectic Manifolds and Hamiltonian Flows
3.4 Morse Theory of Moment Maps
3.5 S1-Equivariant Localization

4 Basics of Comple X Morse Theory
4.1 Some Fundamental Constructions
4.2 Topological Applications of Lefschetz Pencils
4.3 The Hard Lefschetz Theorem
4.4 Vanishing Cycles and Local Monodromy
4.5 Proofofthe Picard Lefschetz formula
4.6 Global Picard-Lefschetz Formulae

5 Exercises and Solutions
5.1 Exercises
5.2 Solutions to Selected Exercises
References
Index

前言/序言

  As the the title suggests, the goal of this book is to give the reader a taste of the “unreasonable effectiveness” of Morse theory. The main idea behind thistechnique can be easily visualized.
  Suppose M is a smooth, compact manifold, which for simplicity we as-sume is embedded in a Euclidean space E. We would like to understand basictopological invariants of M such as its homology, and we attempt a “slicing” technique.
  We fix a unit vector u in E and we start slicing M with the family of hyperplanes perpendicular to u. Such a hyperplane will in general intersectM along a submanifold (slice). The manifold can be recovered by continuouslystacking the slices on top of each other in the same order as they were cut out of M.
  Think of the collection of slices as a deck of cards of various shapes. If welet these slices continuously pile up in the order they were produced, we noticean increasing stack of slices. As this stack grows, we observe that there aremoments of time when its shape suffers a qualitative change. Morse theoryis about extracting quantifiable information by studying the evolution of theshape of this growing stack of slices.

用户评价

评分

封皮做工不咋,内容还是很好的

评分

过曲面上任一点,给定一个曲面的切方向,则存在唯一一条测地线切于此方向。

评分

Morse theory

评分

的分支。它是H.M.莫尔斯在20世纪30年代创立的。由莫尔斯理论得知 ,微分流形与其上的光滑函数紧密相关,利用光滑函数不仅能研究微分流形的局部性质,而且某些光滑函数例如莫尔斯函数包含了刻划流形整体性质的丰富信息。莫尔斯理论主要分两部分,一是临界点理论,一是它在大范围变分问题上的应用。一个莫尔斯函数也是一个非简谐振子的一种表达法。

评分

莫尔斯

评分

4 参考

评分

在适当的小范围内联结任意两点的测地线是最短线,所以测地线又称为短程线。

评分

莫尔斯理论

评分

很不错的书,内容丰富

相关图书

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有