編輯推薦
心,是人體的君王,統領一切。它既掌控著物質屬性的心髒,又掌控著精神屬性的心靈。心不僅主宰著人的喜怒哀樂,也主宰著人的疾病與健康,甚至主宰著人的命運。
病由心生。疾病,源頭上說是心病。
病,人生遇到的一切不愉快事情,都可以說是病。身體上的不舒服固然是病,心理上的不愉快也可以是病,道德素質惡劣可以是病,人際交往中的挫摺和失敗都可以是病。
心靈治愈術
靜心,讓心靈迴歸寜靜,要領是盡量做到沒有雜念,通過靜坐減少雜念,藉助睡眠掃除雜念。
觀想,集中心念觀想某一對象,激發內心的精神力量,保持心靈的開放性,讓每一個念頭都成為良藥。
正見,就是活在當下,把注意力集中在當下,不想過去,也不想未來。過去的是煩惱,未來的是妄想,都是虛幻的;我們能把握的,隻有當下,當下纔是實實在在的。
內容簡介
《心靈能量》一書,以心為起點,將七情、五行性格與心肝脾肺腎五大係統疾病的對應關係作瞭深入細緻地分析,以生活化的案例嚮我們證明瞭這樣一個道理:養生不隻是養身,更重要的是養心。心生百病,同樣心也能治百病。心是好的藥。
總之,這是一本放大心靈能量,教會你心靈治愈,重拾生命真諦的心靈勵誌書。
目錄
Historical Introduction
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Introduction
1.2 Divisibility
1.3 Greatest common divisor
1.4 Prime numbers
1.5 The fundamental theorem of arithmetic
1.6 The series of reciprocals of the primes
1.7 The Euclidean algorithm
1.8 The greatest common divisor of more than two, numbers
Exercises for Chapter 1
Chapter 2
Arithmetical Functions and Dirichlet Multiplication
2.1 Introduction
2.2 The M6bius function (n)
2.3 The Euler totient function (n)
2.4 A relation connecting and u
2.5 A product formula for (n)
2.6 The Dirichlet product of arithmetical functions
2.7 Dirichlet inverses and the M6bius inversion formula
2.8 The Mangoldt function A(n)
2.9 Muitiplicative functions
2.10 Multiplicative functions and Dirichlet multiplication
2.11 The inverse of a completely multiplicative function
2.12 Liouville's function)
2.13 The divisor functions a,(n)
2.14 Generalized convolutions
2.15 Formal power series
2.16 The Bell series of an arithmetical function
2.17 Bell series and Dirichlet multiplication
2.18 Derivatives of arithmetical functions
2.19 The Selberg identity
Exercises for Chapter 2
Chapter 3
Averages of Arithmetical Functions
3.1 Introduction
3.2 The big oh notation. Asymptotic equality of functions
3.3 Euler's summation formula
3.4 Some elementary asymptotic formulas
3.5 The average order of din)
3.6 The average order of the divisor functions a,(n)
3.7 The average order of ~0(n)
3.8 An application to the distribution of lattice points visible from the origin
3.9 The average order of/4n) and of A(n)
3.10 The partial sums ofa Dirichlet product
3.11 Applications to pin) and A(n)
3.12 Another identity for the partial gums of a Dirichlet product
Exercises for Chapter 3
Chapter 4
Some Elementary Theorems on the Distribution of Prime
Numbers
4.1 Introduction
4.2 Chebyshev's functions (x) and (x)
4.3 Relations connecting/x) and n(x)
4.4 Some equivalent forms of the prime number theorem
4.5 Inequalities for (n) and p,
4.6 Shapiro's Tauberian theorem
4.7 Applications of Shapiro's theorem
4.8 An asymptotic formula for the partial sums, (I/p)
4.9 The partial sums of the M6bius function 91
4.10 Brief sketch of an elementary proof of the prime number theorem
4.11 Selbcrg's asymptotic formula
Exercises for Chapter 4
Chapter 5
Congruences
5.1 Definition and basic properties of congruences
5.2 Residue classes and complete residue systems
5.3 Linear congruences
Chapter 6
Finite Abelian Groups and Their Characters
Chapter 7
Dirichlet's Theorem on Primes in Arithmetic Progressions
Chapter 8
Periodic Arithmetical Functions and Gauss Sums
Chapter 9
Quadratic Residues and the Quadratic Reciprocity Law
Chapter 10
Primitive Roots
Chapter 11
Dirichlet Series and Euler Products
Chapter 12
The Functions (s) and L(s,x)
Chapter 13
Analytic Proof of the Prime Number Theorem
前言/序言
解析數論導論 下載 mobi epub pdf txt 電子書