應用隨機過程 概率模型導論(英文版 第11版) pdf epub mobi txt 電子書 下載 2024

圖書介紹


應用隨機過程 概率模型導論(英文版 第11版)


[美] 羅斯(Sheldon M.Ross) 著



點擊這裡下載
    


想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

发表于2024-11-22

類似圖書 點擊查看全場最低價

齣版社: 人民郵電齣版社
ISBN:9787115384744
版次:1
商品編碼:11657088
包裝:平裝
叢書名: 圖靈原版數學·統計學係列
開本:16開
齣版時間:2015-03-01
用紙:膠版紙
頁數:767

應用隨機過程 概率模型導論(英文版 第11版) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



應用隨機過程 概率模型導論(英文版 第11版) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

應用隨機過程 概率模型導論(英文版 第11版) pdf epub mobi txt 電子書 下載 2024



具體描述

編輯推薦

《應用隨機過程 概率模型導論》是國際知名統計學傢Sheldon M. Ross所著的關於基礎概率理論和隨機過程的經典教材,被加州大學伯剋利分校、哥倫比亞大學、普度大學、密歇根大學、俄勒岡州立大學、華盛頓大學等眾多國外知名大學所采用。
與其他隨機過程教材相比,本書非常強調實踐性,內含極其豐富的例子和習題,涵蓋瞭眾多學科的各種應用。作者富於啓發而又不失嚴密性的敘述方式,有助於使讀者建立概率思維方式,培養對概率理論、隨機過程的直觀感覺。對那些需要將概率理論應用於精算學、計算機科學、管理學和社會科學的讀者而言,本書是一本極好的教材或參考書。
第11版新增大量例子和習題,還對連續時間的馬爾可夫鏈、漂移布朗運動等內容做瞭修訂,更加注重強化讀者的概率直觀。

內容簡介

  《應用隨機過程 概率模型導論(英文版 第11版)》是一部經典的隨機過程著作,敘述深入淺齣、涉及麵廣。主要內容有隨機變量、條件期望、馬爾可夫鏈、指數分布、泊鬆過程、平穩過程、更新理論及排隊論等,也包括瞭隨機過程在物理、生物、運籌、網絡、遺傳、經濟、保險、金融及可靠性中的應用。特彆是有關隨機模擬的內容,給隨機係統運行的模擬計算提供瞭有力的工具。最新版還增加瞭不帶左跳的隨機徘徊和生滅排隊模型等內容。本書約有700道習題,其中帶星號的習題還提供瞭解答。

  《應用隨機過程 概率模型導論(英文版 第11版)》可作為概率論與數理統計、計算機科學、保險學、物理學、社會科學、生命科學、管理科學與工程學等專業隨機過程基礎課教材。

作者簡介

  Sheldon M. Ross,國際知名概率與統計學傢,南加州大學工業工程與運籌係係主任。1968年博士畢業於斯坦福大學統計係,曾在加州大學伯剋利分校任教多年。研究領域包括:隨機模型、仿真模擬、統計分析、金融數學等。Ross教授著述頗豐,他的多種暢銷數學和統計教材均産生瞭世界性的影響,如《概率論基礎教程(第8版)》等。

內頁插圖

精彩書評

  ★本書的一大特色是實例豐富,內容涉及多個學科,尤其是精算學……相信任何有上進心的讀者都會對此愛不釋手。”
  ——JeanLeMaire,賓夕法尼亞大學沃頓商學院

  ★“書中的例子和習題非常齣色,作者不僅提供瞭非常基本的例子,以闡述基礎概念和公式,還從盡可能多的學科中提煉齣許多較高級的實例,極具參考價值。”
  ——MattCarlton,加州州立理工大學(CalPoly)



目錄

1IntroductiontoProbabilityTheory
1.1Introduction
1.2SampleSpaceandEvents
1.3ProbabilitiesDefinedonEvents
1.4ConditionalProbabilities
1.5IndependentEvents
1.6Bayes'Formula
Exercises
References
2RandomVariables
2.1RandomVariables
2.2DiscreteRandomVariables
2.2.1TheBernoulliRandomVariable
2.2.2TheBinomialRandomVariable
2.2.3TheGeometricRandomVariable
2.2.4ThePoissonRandomVariable
2.3ContinuousRandomVariables
2.3.1TheUniformRandomVariable
2.3.2ExponentialRandomVariables
2.3.3GammaRandomVariables
2.3.4NormalRandomVariables
2.4ExpectationofaRandomVariable
2.4.1TheDiscreteCase
2.4.2TheContinuousCase
2.4.3ExpectationofaFunctionofaRandomVariable
2.5JointlyDistributedRandomVariables
2.5.1JointDistributionFunctions
2.5.2IndependentRandomVariables
2.5.3CovarianceandVarianceofSumsofRandomVariables
2.5.4JointProbabilityDistributionofFunctionsofRandomVariables
2.6MomentGeneratingFunctions
2.6.1TheJointDistributionoftheSampleMeanandSampleVariancefromaNormalPopulation
2.7TheDistributionoftheNumberofEventsthatOccur
2.8LimitTheorems
2.9StochasticProcesses
Exercises
References
3ConditionalProbabilityandConditionalExpectation
3.1Introduction
3.2TheDiscreteCase
3.3TheContinuousCase
3.4ComputingExpectationsbyConditioning
3.4.1ComputingVariancesbyConditioning
3.5ComputingProbabilitiesbyConditioning
3.6SomeApplications
3.6.1AListModel
3.6.2ARandomGraph
3.6.3UniformPriors,Polya'sUrnModel,andBose-EinsteinStatistics
3.6.4MeanTimeforPatterns
3.6.5Thek-RecordValuesofDiscreteRandomVariables
3.6.6LeftSkipFreeRandomWalks
3.7AnIdentityforCompoundRandomVariables
3.7.1PoissonCompoundingDistribution
3.7.2BinomialCompoundingDistribution
3.7.3ACompoundingDistributionRelatedtotheNegativeBinomial
Exercises
4MarkovChains
4.1Introduction
4.2Chapman-KolmogorovEquations
4.3ClassificationofStates
4.4Long-RunProportionsandLimitingProbabilities
4.4.1LimitingProbabilities
4.5SomeApplications
4.5.1TheGambler'sRuinProblem
4.5.2AModelforAlgorithmicEfficiency
4.5.3UsingaRandomWalktoAnalyzeaProbabilisticAlgorithmfortheSatisfiabilityProblem
4.6MeanTimeSpentinTransientStates
4.7BranchingProcesses
4.8TimeReversibleMarkovChains
4.9MarkovChainMonteCarloMethods
4.10MarkovDecisionProcesses
4.11HiddenMarkovChains
4.11.1PredictingtheStates
Exercises
References
5TheExponentialDistributionandthePoissonProcess
5.1Introduction
5.2TheExponentialDistribution
5.2.1Definition
5.2.2PropertiesoftheExponentialDistribution
5.2.3FurtherPropertiesoftheExponentialDistribution
5.2.4ConvolutionsofExponentialRandomVariables
5.3ThePoissonProcess
5.3.1CountingProcesses
5.3.2DefinitionofthePoissonProcess
5.3.3InterarrivalandWaitingTimeDistributions
5.3.4FurtherPropertiesofPoissonProcesses
5.3.5ConditionalDistributionoftheArrivalTimes
5.3.6EstimatingSoftwareReliability
5.4GeneralizationsofthePoissonProcess
5.4.1NonhomogeneousPoissonProcess
5.4.2CompoundPoissonProcess
5.4.3ConditionalorMixedPoissonProcesses
5.5RandomIntensityFunctionsandHawkesProcesses
Exercises
References
6Continuous-TimeMarkovChains
6.1Introduction
6.2Continuous-TimeMarkovChains
6.3BirthandDeathProcesses
6.4TheTransitionProbabilityFunctionPij(t)
6.5LimitingProbabilities
6.6TimeReversibility
6.7TheReversedChain
6.8Uniformization
6.9ComputingtheTransitionProbabilities
Exercises
References
7RenewalTheoryandItsApplications
7.1Introduction
7.2DistributionofN(t)
7.3LimitTheoremsandTheirApplications
7.4RenewalRewardProcesses
7.5RegenerativeProcesses
7.5.1AlternatingRenewalProcesses
7.6Semi-MarkovProcesses
7.7TheInspectionParadox
7.8ComputingtheRenewalFunction
7.9ApplicationstoPatterns
7.9.1PatternsofDiscreteRandomVariables
7.9.2TheExpectedTimetoaMaximalRunofDistinctValues
7.9.3IncreasingRunsofContinuousRandomVariables
7.10TheInsuranceRuinProblem
Exercises
References
8QueueingTheory
8.1Introduction
8.2Preliminaries
8.2.1CostEquations
8.2.2Steady-StateProbabilities
8.3ExponentialModels
8.3.1ASingle-ServerExponentialQueueingSystem
8.3.2ASingle-ServerExponentialQueueingSystemHavingFiniteCapacity
8.3.3BirthandDeathQueueingModels
8.3.4AShoeShineShop
8.3.5AQueueingSystemwithBulkService
8.4NetworkofQueues
8.4.1OpenSystems
8.4.2ClosedSystems
8.5TheSystemM/G/
8.5.1Preliminaries:WorkandAnotherCostIdentity
8.5.2ApplicationofWorktoM/G/
8.5.3BusyPeriods
8.6VariationsontheM/G/
8.6.1TheM/G/1withRandom-SizedBatchArrivals
8.6.2PriorityQueues
8.6.3AnM/G/1OptimizationExample
8.6.4TheM/G/1QueuewithServerBreakdown
8.7TheModelG/M/
8.7.1TheG/M/1BusyandIdlePeriods
8.8AFiniteSourceModel
8.9MultiserverQueues
8.9.1Erlang'sLossSystem
8.9.2TheM/M/kQueue
8.9.3TheG/M/kQueue
8.9.4TheM/G/kQueue
Exercises
References
9ReliabilityTheory
9.1Introduction
9.2StructureFunctions
9.2.MinimalPathandMinimalCutSets
9.3ReliabilityofSystemsofIndependentComponents
9.4BoundsontheReliabilityFunction
9.4.1MethodofInclusionandExclusion
9.4.2SecondMethodforObtainingBoundsonr(p)
9.5SystemLifeasaFunctionofComponentLives
9.6ExpectedSystemLifetime
9.6.1AnUpperBoundontheExpectedLifeofaParallelSystem
9.7SystemswithRepair
9.7.1ASeriesModelwithSuspendedAnimation
Exercises
References
10BrownianMotionandStationaryProcesses
10.1BrownianMotion
10.2HittingTimes,MaximumVariable,andtheGambler'sRuinProblem
10.3VariationsonBrownianMotion
10.3.1BrownianMotionwithDrift
10.3.2GeometricBrownianMotion
10.4PricingStockOptions
10.4.1AnExampleinOptionsPricing
10.4.2TheArbitrageTheorem
10.4.3TheBlack-ScholesOptionPricingFormula
10.5TheMaximumofBrownianMotionwithDrift
10.6WhiteNoise
10.7GaussianProcesses
10.8StationaryandWeaklyStationaryProcesses
10.9HarmonicAnalysisofWeaklyStationaryProcesses
Exercises
References
11Simulation
11.1Introduction
11.2GeneralTechniquesforSimulatingContinuousRandomVariables
11.2.1TheInverseTransformationMethod
11.2.2TheRejectionMethod
11.2.TheHazardRateMethod
11.3SpecialTechniquesforSimulatingContinuousRandomVariables
11.3.1TheNormalDistribution
11.3.2TheGammaDistribution
11.3.3TheChi-SquaredDistribution
11.3.4TheBeta(n,m)Distribution
11.3.5TheExponentialDistribution-TheVonNeumannAlgorithm
11.4SimulatingfromDiscreteDistributions
11.4.1TheAliasMethod
11.5StochasticProcesses
11.5.1SimulatingaNonhomogeneousPoissonProcess
11.5.2SimulatingaTwo-DimensionalPoissonProcess
11.6VarianceReductionTechniques
11.6.1UseofAntitheticVariables
11.6.2VarianceReductionbyConditioning
11.6.3ControlVariates
11.6.4ImportanceSampling
11.7DeterminingtheNumberofRuns
11.8GeneratingfromtheStationaryDistributionofaMarkovChain
11.8.1CouplingfromthePast
11.8.2AnotherApproach
Exercises
References
Appendix:SolutionstoStarredExercises
Index


前言/序言


應用隨機過程 概率模型導論(英文版 第11版) 下載 mobi epub pdf txt 電子書
應用隨機過程 概率模型導論(英文版 第11版) pdf epub mobi txt 電子書 下載
想要找書就要到 求知書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

好!

評分

作者的名字值這個價。

評分

還沒看,非常喜歡統計學和心理學

評分

必備經典教材,很實用。知識點全。

評分

在京東買東西,今天買(自營)明天就可以送到。用這段話來評價,說明這款産品沒問題,至少90分以上,而比較垃圾的産品,我絕對不會偷懶到復製粘貼評價,我絕對會用心的差評,這樣其他消費者在購買的時候會作為參考,會影響該商 品銷量,而商傢也會因此改進商品質量。

評分

非常經典的隨機規劃的書。值得收藏。

評分

深入淺齣,對於搞不確定研究,是很好的教材和參考書

評分

還沒看,非常喜歡統計學和心理學

評分

書太臭瞭太臭瞭太臭瞭太臭太臭瞭太臭瞭太臭太臭瞭,絕非惡意差評!

類似圖書 點擊查看全場最低價

應用隨機過程 概率模型導論(英文版 第11版) pdf epub mobi txt 電子書 下載





相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有