內容簡介
These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut fiir Mathematik of the Eidgen6ssische Technische Hochschule, Ziirich fromNovember, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. JiirgenMoser have encouraged me to write them up for inclusion in the series, published byBirkhnser, of notes of these courses at the ETH.
Dr. Albert Stadler produced detailed notes of the first part of this course, and veryintelligible class-room notes of the rest. Without this work of Dr. StUrdier, these noteswould not have been written. While I have changed some things (such as the proof ofthe Serre duality theorem, here done entirely in the spirit of Serres original paper), thepresent notes follow Dr. Stadlers fairly closely.
內頁插圖
目錄
1. algebraic functions
2. riemann surfaces
3. the sheaf of germs of holomorphic functions
4. the riemann surface of an algebraic function
5. sheaves
6. vector bundles, line bundles and divisors
7. finiteness theorems
8. the dolbeault isomorphism
9. weyls lemma and the serre duality theorem
10. the riemann-roch theorem and some applications
11. further properties of compact riemann surfaces
12. hypereuiptic curves and the canonical map
13. some geometry of curves in projective space
14. bilinear relations
15. the jacobian and abels theorem
16. the riemann theta function
17. the theta divisor
18. torellis theorem
19. riemanns theorem on the singularities of θ
references
前言/序言
These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut fiir Mathematik of the Eidgen6ssische Technische Hochschule, Ziirich fromNovember, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. JiirgenMoser have encouraged me to write them up for inclusion in the series, published byBirkhnser, of notes of these courses at the ETH.
Dr. Albert Stadler produced detailed notes of the first part of this course, and veryintelligible class-room notes of the rest. Without this work of Dr. StUrdier, these noteswould not have been written. While I have changed some things (such as the proof ofthe Serre duality theorem, here done entirely in the spirit of Serres original paper), thepresent notes follow Dr. Stadlers fairly closely.
緊黎曼麯麵 [Compact Riemann Surfaces] 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
幾何類書籍,先看看。
評分
☆☆☆☆☆
正版的,非常值,快遞也給力,必須給好評,就是感覺包裝有點簡陋啊哈哈不過書很好,看瞭下內容也都很不錯,快遞也很給力,東西很好物流速度也很快,和照片描述的也一樣,給個滿分吧下次還會來買。在數學中,黎曼麯麵是德國數學傢黎曼為瞭給多值解析函數設想一個單值的定義域 而提齣的一種麯麵。用現代的語言說,黎曼麯麵就是連通的一維復流形。黎曼麯麵的研究不僅是單復變函數論的基本問題之一,而且與眾多的現代數學分支有緊密聯 係,如多復變函數論、復流形、代數幾何、代數數論、 自守函數等。數學上,特彆是在復分析中,一個黎曼麯麵是一個一維復流形。黎曼麯麵可以被認為是一個復平麵的變形版本:在每一點局部看來,他們就像一片復平麵,但整體的拓撲可能極為不同。例如,他們可以看起來像球或是環,或者兩個頁麵粘在一起。每個黎曼麯麵都是二維實解析流形(也就是麯麵),但它有更多的結構(特彆是一個復結構),因為和樂函數的無歧義的定義需要用到這些結構。一個實二維流形可以變成為一個黎曼麯麵(通常有幾種不同的方式)當且僅當它是可定嚮的。所以球和環有復結構,但是莫比烏斯圈,剋萊因瓶和投影平麵沒有。黎曼是對現代數學影響最大的數學傢之一,我們從他當時的數學水平來看,他作為偉大的分析學傢,其成就可以分為八個領域來論述。前4個領域是關於復分析方麵的,他第一個有意識的將實域過渡到復域,開創瞭復變函數域,代數函數論,常微分方程解析理論及解析數論諸方嚮;後4個領域主要涉及實分析,在積分理論,三角級理論,微分幾何學,數學物理方程等方麵取得重大突破。重要的是一個多世紀之前的成就卻直接同現代數學中的拓撲方法,一般流形概念,聯係拓撲與分析的黎曼-洛赫定理,代數幾何學特彆是阿貝爾簇以及參模等緊密相連,他的空間觀念及黎曼幾何更預示著廣義相對論,正是他促發瞭現代數學的革命性變革。
評分
☆☆☆☆☆
好
評分
☆☆☆☆☆
好書
評分
☆☆☆☆☆
好書
評分
☆☆☆☆☆
好
評分
☆☆☆☆☆
好
評分
☆☆☆☆☆
幾何類書籍,先看看。
評分
☆☆☆☆☆
幾何類書籍,先看看。