內容簡介
《群錶示論26》是作者在北京國際數學研究中心給數學基礎強化班授課講稿的基礎上,結閤在北京大學數學科學學院多次講授群錶示論課的心得體會編寫而成,主要內容包括:有限群在特徵不能整除群的階的域上的綫性錶示、無限群在復(實)數域上的有限維和無限維綫性錶示等。《群錶示論26》緊緊抓住群錶示論的主綫——研究群的不可約錶示,首先提齣要研究的問題, 探索如何解決問題, 把深奧的群錶示論知識講得自然、清晰、易懂。在闡述無限群的綫性錶示理論時,《群錶示論》介紹瞭數學上處理無限問題的典型方法,並且對於需要的拓撲學、實(復)分析以及泛函分析的知識作瞭詳盡介紹。《群錶示論》在絕大多數章節中都配有習題, 並且在書末附有習題解答。
《群錶示論26》可作為高等院校數學係和物理係的研究生以及高年級本科生的群錶示論課的教學用書,也可供數學係和物理係教師、科研工作者以及學過高等代數和抽象代數的讀者使用參考。
目錄
引言
第一章 群錶示論的基本概念
1 同態映射
2 群的綫性錶示的定義和例
3 群的綫性錶示的結構
3.1 子錶示
3.2 錶示的直和
3.3 不可約錶示,可約錶示,完全可約錶示
3.4 群的綫性錶示的結構
4 abel群的不可約錶示
5 非abel群的不可約錶示的一些構造方法
5.1 錶示的提升與分解
5.2 通過群的自同構的撓錶示
5.3 逆步(contragredient)錶示
第二章 有限群的不可約錶示
1 群g的綫性錶示與群代數k[g]上的左模
1.1 群g的綫性錶示與群代數k[g]的綫性錶示
1.2 環上的模,代數上的模
1.3 群g的綫性錶示與群代數k[g]上的左模
2 有限維半單代數的不可約左模
2.1 環a到左理想的直和分解,環a到雙邊理想的直和分解
2.2 有限維半單代數的不可約左模
3 有限維半單代數的不同構的不可約左模的個數
4 有限維單代數的結構,代數閉域上有限維半單代數的不可約左模的維數
5 有限群的不等價的不可約錶示的個數和次數
第三章 群的特徵標
1 群的特徵標的定義和基本性質
2 不可約特徵標的正交關係及其應用
3 不可約復錶示的次數滿足的條件
4 不可約錶示在群論中的應用
第四章 群的錶示的張量積,群的直積的錶示
1 模的張量積
2 群的錶示的張量積
3 群的直積的錶示
4 不可約復錶示的次數滿足的又一條件
第五章 誘導錶示和誘導特徵標
1 誘導錶示
2 誘導特徵標
3 frobenius互反律
4 誘導特徵標不可約的判定
5 群的分裂域,m-群
5.1 綫性空間的基域的擴張,群的分裂域
5.2 m-群
6 誘導特徵標的brauer定理
7 有理特徵標的artin定理
8 frobenius群存在真正規子群的證明
第六章 無限群的綫性錶示
1 群的無限維綫性錶示
2 拓撲空間
3 拓撲群,緊群
3.1 拓撲群
3.2 拓撲群的同態、同構
3.3 緊群
4 拓撲群的綫性錶示
5 緊群上的不變積分
6 緊群的綫性錶示
6.1 緊群的錶示的完全可約性
6.2 正交關係
6.3 不可約錶示組的完備性,peter-weyl定理
6.4 su(2)和so(3)的不可約復錶示
7 局部緊交換群的酉特徵標群
7.1 局部緊群
7.2 交換群的酉特徵標群的概念
7.3 給群g配備拓撲成為拓撲群的方法
7.4 局部緊交換群的酉特徵標群
7.5 局部緊交換群的雙酉特徵標群
7.6 局部緊交換群的商群與子群的酉特徵標群
7.7 初等群的酉特徵標群和雙酉特徵標群
7.8 緊交換群和離散交換群的雙酉特徵標群
7.9 局部緊交換群的雙酉特徵標群
8 局部緊的hausdorff拓撲群上的haar測度
8.1 測度,可測函數,積分
8.2 局部緊的hausdorff拓撲群上的haar測度
9 局部緊的hausdorff拓撲群的酉錶示(或正交錶示)
9.1 hilbert空間的正交分解和連續綫性函數
9.2 賦範綫性空間和banach空間的有界綫性映射
9.3 局部緊的hausdorff拓撲群的酉錶示(或正交錶示)
9.4 賦範綫性空間的雙重連續對偶空間
9.5 拓撲空間的網
9.6 hilbert空間的緊綫性映射的性質
9.7 hilbert空間上有界綫性變換的伴隨變換
9.8 hilbert空間上緊綫性變換的譜和點譜
9.9 hilbert空間上緊自伴隨變換的譜定理
9.10 schur引理,拓撲群的酉錶示,緊群的酉錶示
9.11 凸函數和12-空間
9.12 局部緊的hausdor拓撲群g上的12(g)
9.13 peter-weyl定理的證明
習題解答或提示
參考文獻
符號說明
名詞索引(漢英對照)
群錶示論 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
非常好的一本教材,對數學感興趣的朋友可以讀讀。
評分
☆☆☆☆☆
夏道行的名著
評分
☆☆☆☆☆
大師的作品,初步拜讀就引人入勝,值得精讀,學會其技巧、領悟其原理和思維方式。
評分
☆☆☆☆☆
很好的數學專業書,對幾何和拓撲的概念講解得很清晰,趁活動拿下。
評分
☆☆☆☆☆
不錯不錯,正版的,值得購買
評分
☆☆☆☆☆
比較有趣的一本書,很是經典~~推薦
評分
☆☆☆☆☆
緊緊抓住群錶示論的主綫——研究群的不可約錶示,首先提齣要研究的問題, 探索如何解決問題,把深奧的群錶示論知識講得自然、清晰、易懂。
評分
☆☆☆☆☆
書的難度很大啊,但是還好,沒有什麼印刷質量問題,整本書摸起來的質感也不錯
評分
☆☆☆☆☆
無限維空間的測度積分