數學分析 (第一捲)(第7版)

數學分析 (第一捲)(第7版) pdf epub mobi txt 电子书 下载 2025

[俄] B. A. 卓裏奇
圖書標籤:
想要找书就要到 求知書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
《俄罗斯数学教材选译》序
中文版序言
第7版和第6版序言
第5版和第3版序言
第2版序言
第1版序言摘录
第一章 一些通用的数学概念与记号
§1. 逻辑符号
1. 联词与括号
2. 关于证明的附注
3. 某些专门记号
4. 最后的附注
习题
§2. 集合及其基本运算
1. 集合(集)的概念
2. 包含关系
3. 最简单的集合运算
习题
§3. 函数
1. 函数(映射)的概念
2. 映射的简单分类
3. 函数的复合与互逆映射
4. 作为关系的函数. 函数的图像
习题
§4. 某些补充
1. 集合的势(基数类)
2. 公理化集合论
3. 关于数学命题的结构及其集合论语言表述的附注
习题
第二章 实数
§1. 实数集的公理系统和某些一般性质
1. 实数集的定义
2. 实数的某些一般的代数性质
3. 完备性公理与数集的上确界(下确界)的存在性
§2. 最重要的实数类和实数运算方面的一些计算问题
1. 自然数与数学归纳原理
2. 有理数与无理数
3. 阿基米德原理
4. 实数集的几何解释与实数运算方面的一些计算问题
习题
§3. 关于实数集完备性的一些基本引理
1. 闭区间套引理(柯西–康托尔原理)
2. 有限覆盖引理(博雷尔–勒贝格原理)
3. 极限点引理(波尔查诺–魏尔斯特拉斯原理)
习题
§4. 可数集与不可数集
1. 可数集
2. 连续统的势
习题
第三章 极限
§1. 序列的极限
1. 定义和例子
2. 数列极限的性质
3. 数列极限的存在问题
4.级数的初步知识
习题
§2. 函数的极限
1. 定义和例子
2. 函数极限的性质
3. 函数极限的一般定义(基上的极限)
4. 函数极限的存在问题
习题
第四章 连续函数
§1. 基本定义和实例
1. 函数在一个点的连续性
2. 间断点
§2. 连续函数的性质
1. 局部性质
2. 连续函数的整体性质
习题
第五章 微分学
§1. 可微函数
1. 问题和引言
2. 在一点处可微的函数
3. 切线. 导数和微分的几何意义
4. 坐标系的作用
5. 例题
习题
§2. 基本的微分法则
1. 微分运算和算术运算
2. 复合函数的微分运算
3. 反函数的微分运算
4. 基本初等函数导数表
5. 最简单的隐函数的微分运算
6. 高阶导数
习题
§3. 微分学的基本定理
1. 费马引理和罗尔定理
2. 关于有限增量的拉格朗日定理和柯西定理
3. 泰勒公式
习题
§4. 用微分学方法研究函数
1. 函数单调的条件
2. 函数具有内极值点的条件
3. 函数凸的条件
4. 洛必达法则
5. 函数图像的画法
习题
§5. 复数. 初等函数之间的相互联系
1. 复数
2. C 中的收敛性与复数项级数
3. 欧拉公式以及初等函数之间的相互联系
4. 函数的幂级数表示和解析性
5. 复数域C 的代数封闭性
习题
§6. 微分学在自然科学问题中的应用实例
1. 变质量物体的运动
2. 气压公式
3. 放射性衰变、链式反应和原子反应堆
4. 大气中的落体
5. 再谈数e 和函数ex
6. 振动
习题
§7. 原函数
1. 原函数与不定积分
2. 求原函数的一些基本的一般方法
3. 有理函数的原函数
4. 形如∫R(cos x,sin x)dx 的原函数
5. 形如∫R(x,y(x))dx 的原函数
习题
第六章 积分
§1. 积分的定义和可积函数集的描述
1. 问题和启发性思考
2. 黎曼积分的定义
3. 可积函数集
习题
§2. 积分的线性、可加性和单调性
1. 积分是空间R[a,b]上的线性函数
2. 积分是积分区间的可加函数
3. 积分的估计,积分的单调性,中值定理
习题
§3. 积分与导数
1. 积分与原函数
2. 牛顿–莱布尼茨公式
3. 定积分的分部积分法和泰勒公式
4. 定积分中的变量代换
5. 例题
习题
§4. 积分的一些应用
1. 有向区间的可加函数与积分
2. 道路的长度
3. 曲边梯形的面积
4. 旋转体的体积
5. 功与能
习题
§5. 反常积分
1. 反常积分的定义、例题和基本性质
2. 对反常积分收敛性的研究
3. 具有多个奇异点的反常积分
习题
第七章 多元函数及其极限与连续性
§1. 空间Rm和它的重要子空间
1. 集合Rm和其中的距离
2. Rm中的开集与闭集
3. Rm中的紧集
习题
§2. 多元函数的极限与连续性
1. 函数的极限
2. 多元函数的连续性和连续函数的性质
习题
第八章 多元函数微分学
§1. Rm 中的向量结构
1. Rm 是向量空间
2. 线性映射L:Rm→Rn
3. Rm 中的范数
4. Rm 中的欧几里得结构
§2. 多元函数的微分
1. 多元函数在一点的可微性及其微分
2. 实值函数的微分与偏导数
3. 映射微分的坐标形式.雅可比矩阵
4. 函数在一点的连续性、偏导数和可微性
§3. 基本微分法则
1. 微分运算的线性性质
2. 复合映射的微分运算
3. 逆映射的微分运算
习题
§4. 多元实值函数微分学的基本内容
1. 中值定理
2. 多元函数可微性的充分条件
3. 高阶偏导数
4. 泰勒公式
5. 多元函数的极值
6. 与多元函数有关的某些几何概念
习题
§5. 隐函数定理
1. 问题的提法与启发性思考
2. 隐函数定理的最简单情形
3. 向依赖关系F(x1,• • • ,xm,y)= 0的推广
4. 隐函数定理
习题
§6. 隐函数定理的一些推论
1. 反函数定理
2. 光滑映射的局部正则形式
3. 函数的相关性
4. 局部分解微分同胚为最简微分同胚的复合
5. 莫尔斯引理
习题
§7. Rn中的曲面和条件极值理论
1. Rn中的k维曲面
2. 切空间
3. 条件极值
习题
单元测试题
考试大纲
附录一面向一年级学生的数学分析引言
附录二初论方程的数值解法
附录三初论勒让德变换
附录四初论黎曼{斯蒂尔切斯积分、函数和广义函数
附录五欧拉{麦克劳林公式
附录六再论隐函数定理
参考文献
名词索引
人名译名对照表
译后记
· · · · · · (收起)

具体描述

本書是作者在莫斯科大學力學數學係多遍講授數學分析課程的基礎上寫成的,自1981 年第1 版齣版以來,到2015 年已經修訂、增補至第7 版。作者加強瞭分析學、代數學和幾何學等現代數學課程之間的聯係,重點關注一般數學中最有本質意義的概念和方法,采用適當接近現代數學文獻的語言進行敘述,在保持數學一般理論敘述嚴謹性的同時,也盡量體現數學在自然科學中的各種應用。

全書共兩捲,第一捲內容包括:集閤、邏輯符號的運用、實數理論、極限和連續性、一元函數微分學、積分、多元函數及其極限與連續性、多元函數微分學。

本書觀點較高,內容豐富新穎,所選習題極具特色,是教材理論部分的有益補充。本書可作為綜閤大學和師範大學數學、物理、力學及相關專業的教師和學生的教材或主要參考書,也可供工科大學應用數學專業的教師和學生參考使用。

用户评价

评分

##比第四版翻译好了很多,适合作为学完高数之后的同学的数分教材,另外习题建议另配一本,这个习题太坑了,当初写完卓里奇的习题之后表示这辈子都不想碰数分了

评分

##关于Second Mean Value Theorem for integral的Proof惊为天人

评分

##近来推公式,感觉大一的基础课没有学好,但书要给五星

评分

##第一本其实没那么难。。第二本开始就那个了。建议搭配张平院士的视频看,不要太死扣数中的细节。有时间学了更高级的理论再回来看就水到渠成了。

评分

##考完了,纪念一下

评分

##莫大的铁拳,揍得我怀疑人生

评分

##考完了,纪念一下

评分

##比较一般,比不上菲赫金歌尔兹的那套。

评分

##封神了封神了

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有