《辛幾何講義》是美國著名數學傢Shlomo Sternberg於2010年在清華大學教授辛幾何的講義,分為兩個部分。第一部分(第1章~第10章)介紹瞭辛群、辛範疇、辛流形和Kostant—Souriau定理等內容;第二部分(第11章~第16章)分彆討論瞭Marle常秩嵌入定理、環麵作用的凸性定理、Hamiltonian綫性化定理和極小偶對。
集合中的点和点到集合的态射等价 辛流形的点就是其拉格朗日子流形 这就是海森伯的不确定原理;函子之间的态射 转置诱导了一个对合函子 ; 无穷小生成元就是向量场;weil公式就是李导数的显示表达是所有微分计算的关键陈省身关键使用了微分形式作为计算工具而不是向量场,使用了活动标架(主丛联络)而不是不变式(切丛联络)。莫尔斯技巧是用微分形式表达的:流形上两个光滑的微分形式:是否有一个f是的fw1=w2,f:流形的同胚。一个广义weil公式推理出了Moser定理,加上同伦映射推理了庞加莱引理--我看到了数学里最隐秘的东西 广义weil恒等式 推理出同伦公式 达布最初定理 所有相同维数的结构都是局部辛同胚 。辛几何本就是理论力学的基本图像。
评分##一般
评分集合中的点和点到集合的态射等价 辛流形的点就是其拉格朗日子流形 这就是海森伯的不确定原理;函子之间的态射 转置诱导了一个对合函子 ; 无穷小生成元就是向量场;weil公式就是李导数的显示表达是所有微分计算的关键陈省身关键使用了微分形式作为计算工具而不是向量场,使用了活动标架(主丛联络)而不是不变式(切丛联络)。莫尔斯技巧是用微分形式表达的:流形上两个光滑的微分形式:是否有一个f是的fw1=w2,f:流形的同胚。一个广义weil公式推理出了Moser定理,加上同伦映射推理了庞加莱引理--我看到了数学里最隐秘的东西 广义weil恒等式 推理出同伦公式 达布最初定理 所有相同维数的结构都是局部辛同胚 。辛几何本就是理论力学的基本图像。
评分 评分##一般
评分集合中的点和点到集合的态射等价 辛流形的点就是其拉格朗日子流形 这就是海森伯的不确定原理;函子之间的态射 转置诱导了一个对合函子 ; 无穷小生成元就是向量场;weil公式就是李导数的显示表达是所有微分计算的关键陈省身关键使用了微分形式作为计算工具而不是向量场,使用了活动标架(主丛联络)而不是不变式(切丛联络)。莫尔斯技巧是用微分形式表达的:流形上两个光滑的微分形式:是否有一个f是的fw1=w2,f:流形的同胚。一个广义weil公式推理出了Moser定理,加上同伦映射推理了庞加莱引理--我看到了数学里最隐秘的东西 广义weil恒等式 推理出同伦公式 达布最初定理 所有相同维数的结构都是局部辛同胚 。辛几何本就是理论力学的基本图像。
评分集合中的点和点到集合的态射等价 辛流形的点就是其拉格朗日子流形 这就是海森伯的不确定原理;函子之间的态射 转置诱导了一个对合函子 ; 无穷小生成元就是向量场;weil公式就是李导数的显示表达是所有微分计算的关键陈省身关键使用了微分形式作为计算工具而不是向量场,使用了活动标架(主丛联络)而不是不变式(切丛联络)。莫尔斯技巧是用微分形式表达的:流形上两个光滑的微分形式:是否有一个f是的fw1=w2,f:流形的同胚。一个广义weil公式推理出了Moser定理,加上同伦映射推理了庞加莱引理--我看到了数学里最隐秘的东西 广义weil恒等式 推理出同伦公式 达布最初定理 所有相同维数的结构都是局部辛同胚 。辛几何本就是理论力学的基本图像。
评分 评分本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 tushu.tinynews.org All Rights Reserved. 求知書站 版权所有